Hydrothermal synthesis, phase evolution, and optical properties of Eu3+-doped KF-YF3 system materials

Abstract

Through a polyethylene-glycol-assisted hydrothermal method, a series of potassium fluoride (KF)-Yttrium (III) fluoride (YF3) system materials have been synthesized. By controlling the reactant ratios of KF: rare earth ions (RE3+), the hydrothermal temperatures, and the pH values of the prepared solutions, the final products can evolve among the orthorhombic phase of YF3 and/or the tetragonal phase of potassium triyttrium decafluoride (KY3F10) and/or the cubic phase of potassium yttrium tetrafluoride (KYF4). The final products are characterized by the x-ray diffraction (XRD) patterns, the field-emission scanning electron microscopy (FE-SEM) images, the energy-dispersive spectroscopy (EDS) patterns, the photoluminescence (PL) spectra, and the luminescent dynamic decay curves. The XRD patterns of the samples suggest the phase evolution of the final products. The FE-SEM images and the EDS patterns prove that. Europium ion (Eu3+) acting as a probe, its PL spectra and the luminescent decay curves all put together prove the phase evolution of the final products. The research can be extended to study the other KF-REF3 system materials.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
SCHEME 1.
FIG. 7.
Table I.
FIG. 8.

References

  1. 1.

    H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, and C.H. Yan: High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    B. Yan and J.H. Wu: Facile composite synthesis and photolumines-cence of NaGd(Mo04)2: Ln + (Ln = Eu, Tb) submicrometer phosphors. J. Mater. Res. 24, 32 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    M. Yu, H. Wang, C.K. Lin, G.Z. Li, and J. Lin: Sol-gel synthesis and photoluminescence properties of spherical SiO2@LaP04:Ce3+/Tb3+ particles with a core-shell structure. Nanotechnology 17, 3245 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    C.X. Li and J. Lin: Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 20, 6831 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    C-H. Liang, Y-C. Chang, Y-S. Chang, and S. Wu: Photoluminescence properties of Eu +-doped BaY2Zn05 phosphors under near-ultraviolet irradiation. J. Mater. Res. 25, 850 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    N. Menyuk, K. Dwight, and J.W. Pierce: NaYF4: Yb, Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159 (1972).

    CAS  Article  Google Scholar 

  7. 7.

    J.L. Sommerdijk and A. Bril: Phosphors for the conversion of infrared radiation into visible light. Philips Tech. Rev. 34, 1 (1974).

    Google Scholar 

  8. 8.

    E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane: A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    C.Y. Cao, H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, and K.H. Kim: Ce3+/Tb3+ activated GdF3, KGdF4, and CeF3 submicro/nanocrystals: Synthesis, phase evolution, and optical properties. J. Mater. Res. 26, 2916 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    S. Shionoya and W.M. Yen: Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).

    Google Scholar 

  11. 11.

    P.R. Diamente, M. Raudsepp, and F.C.J.M. van Veggel: Dispersible Tm +-doped nanoparticles that exhibit strong 1.47 um photoluminescence. Adv. Funct. Mater. 17, 363 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    X.H. Liu, L.M. Wang, Z.Y. Wang, and Z.Q. Li: Synthesis of biocompatible and luminescent NaGdF4:Yb, Er@Carbon nanoparticles in water-in-oil microemulsion. J. Mater. Res. 26, 82 (2011).

    Article  Google Scholar 

  13. 13.

    K.W. Kramer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, and S.R. Liithi: Hexagonal sodium yttrium fluoride-based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244 (2004).

    Article  Google Scholar 

  14. 14.

    R. Wegh, H. Donker, K. Oskam, and A. Meijerink: Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    P.E.A. Möbert, A. Diening, E. Heumann, G. Huber, and B.H.T. Chai: Room-temperature continuous-wave upconversion-pumped laser emission in Ho, Yb:KYF4 at 756, 1070, and 1390 nm. Laser Phys. 8, 210 (1998).

    Google Scholar 

  16. 16.

    A. Braud, S. Girard, J.L. Doualan, M. Thuau, R. Moncorgé, and A.M. Tkachuk: Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 um. Phys. Rev. B 61, 5280 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    D.M. Yang, G.G. Li, X.J. Kang, Z.Y. Cheng, P.A. Ma, C. Peng, H.Z. Lian, C.X. Li, and J. Lin: Room temperature synthesis of hydrophilic Ln3+-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: Energy transfer, size-dependent and color-tunable luminescence properties. Nanoscale 2, 3450 (2012).

    Article  Google Scholar 

  18. 18.

    N. Kodama and Y. Watanabe: Visible quantum cutting through downconversion in Eu3+-doped KGd3F10 and KGd2F7 crystals. Appl. Phys. Lett. 84, 4141 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    T. Lee, L. Luo, W. Diau, T. Chen, B. Cheng, and C. Tung: Visible quantum cutting through downconversion in green-emitting K2GdF5:Tb3+ phosphors. Appl. Phys. Lett. 89, 131121 (2006).

    Article  Google Scholar 

  20. 20.

    L.W. Yang, Y.Y. Zhang, J.J. Li, Y. Li, J.X. Zhong, and P.K. Chu: Magnetic and upcon verted luminescent properties of multifunctional lanthanide-doped cubic KGdF4 nanocrystals. Nanoscale 2, 2805 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    H-T. Wong, F. Vetrone, R. Naccache, H.L.W. Chan, J.H. Hao, and J.A. Capobianco: Water-dispersible ultrasmall multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21, 16589 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    C.Y. Cao, H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, and K.H. Kim: Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+-doped KGdF4 nanocrystals. J. Mater. Chem. 21, 10342 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    C.X. Li, Z.H. Xu, D.M. Yang, Z.Y. Cheng, Z.Y. Hou, P.A. Ma, H.Z. Lian, and J. Lin: Well-dispersed KRE3F10 (RE = Sm-Lu, Y) nanocrystals: Solvothermal synthesis and luminescence properties. CrystEngComm 14, 670 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    J.H. Liang, Q. Peng, X. Wang, X. Zheng, R.J. Wang, X.P. Qiu, C.W. Nan, and Y.D. Li: Chromate nanorods/nanobelts: General synthesis, characterization, and properties. Inorg. Chem. 44, 9405 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    L.G. Deshazer and G.H. Dieke: Spectra and energy levels of Eu in LaCl3. J. Chem. Phys. 38, 2190 (1963).

    CAS  Article  Google Scholar 

  26. 26.

    M. Yu, J. Lin, and J. Fang: Silica spheres coated with YV04:Eu layers via sol—gel process: A simple method to obtain spherical core-shell phosphors. Chem. Mater. 17, 1783 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    F. Tao, Z.J. Wang, L.Z. Yao, W.L. Cai, and X.G. Li: Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. J. Phys. Chem. C 111, 3241 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    X.Y. Chen and G.K. Liu: The standard and anomalous crystal-field spectra of Eu3+. J. Solid State Chem. 178, 419 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0022540) and also this research was supported by NCRC (National Core Research Center) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0001-226). The first author thanks for the financial support of National Natural Science Foundation of China (Grant No. 61205217), the project of Young Excellent Doctor (JZB11001) of Jinggangshan University, and the project of the Key Subject of Atomic and Molecular Physics supported by Jiangxi Province (2011-1015), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung Hyun Jeong.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, C., Kyoung Yang, H., Kee Moon, B. et al. Hydrothermal synthesis, phase evolution, and optical properties of Eu3+-doped KF-YF3 system materials. Journal of Materials Research 27, 2988–2995 (2012). https://doi.org/10.1557/jmr.2012.331

Download citation