Effect of surface properties of mesoporous silica on adsorption of mesoionic compound molsidomine

Abstract

Molsidomine is one of the sydnonimine class of antianginal drugs that due to its structure exhibits both dipolar nature and aromatic properties. To select efficient carrier for the drug, unmodified and modified mesoporous silica materials were synthesized using phenyltriethoxysilane and 3-aminopropyltriethoxysilane via cocondensation and grafting routes. Synthesis of the mesoporous silica materials via cocondensation was carried out in the presence of D-glucose as pore-forming agent. Equilibrium isotherms for the adsorption of mesoionic compound molsidomine on the mesoporous silica materials were analyzed by the Langmuir, Freundlich, Redlich-Peterson and Langmuir–Freundlich (Sips) models. Langmuir model is found to be the best to explain the equilibrium data. Comparative study of the adsorption properties of the unmodified and modified mesoporous silica materials demonstrated that the phenyl-modified silica materials are the most efficient adsorbents for molsidomine. They exhibit the highest adsorption capacity and affinity in relation to the mesoionic compound.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5
FIG. 6
TABLE II
FIG. 7
FIG. 8
TABLE III
TABLE IV

REFERENCES

  1. 1.

    M. Vallet-Regi, F. Balas, and D. Acros: Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46, 7548 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, and V.S-Y. Lin: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. 60, 1278 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    S.P. Rigby, M. Fairhead, and C.F. van der Walle: Engineering silica particles as oral drug delivery vehicles. Curr. Pharm. Des. 14, 1821 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    B.V. Badami: Mesoionic compounds. An unconventional class of aromatic heterocycles. Resonance 11, 40 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    V.G. Yashunskii and L.E. Kholodov: The chemistry of sydnone imines. Russ. Chem. Rev. 49, 28 (1980).

    Article  Google Scholar 

  6. 6.

    B. Streel, A. Ceccato, C. Peerboom, C. Zimmer, R. Sibenaler, and P. Maes: Determination of molsidomine and its active metabolite in human plasma using liquid chromatography with tandem mass spectrometric detection. J. Chromatogr. A 819, 113 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    P. Luliński and D. Maciejewska: Examination of imprinting process with molsidomine as a template. Molecules 14, 2212 (2009).

    Article  Google Scholar 

  8. 8.

    R.K. Iler: The Chemistry of Silica (Wiley, New York, 1979), p. 245.

    Google Scholar 

  9. 9.

    J. Kim, P. Seidler, L.S. Wan, and C. Fill: Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J. Colloid Interface Sci. 329, 114 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Wei, J. Xu, H. Dong, J.H. Dong, K. Qiu, and S.A. Jansen-Varnum: Preparation and physisorption characterization of D-glucose-templated mesoporous silica sol-gel materials. Chem. Mater. 11, 2023 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    H. Dong: Organic-inorganic hybrid mesoporous silica materials and their application as host matrix for protein molecules. Ph.D. Thesis, Drexel University, Philadelphia, PA, 2002.

    Google Scholar 

  12. 12.

    S-W. Song, K. Hidajat, and S. Kawi: Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir 21, 9568 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    G. Wang, A.N. Otuonye, E.A. Blair, K. Denton, Z. Tao, and T. Asefa: Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. J. Solid State Chem. 182, 1649 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    L. Yang, S. Weng, J.R. Ferraro, and J. Wu: Far infrared study of some mono- and disaccharides. Vib. Spectrosc. 25, 57 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    R.G. Zhbankov, V.M. Andrianov, C. Ratajczak, and M. Marchewka: Vibrational spectra and stereochemistry of mono- and polysaccharides. II. D-glucose and D-galactose α-anomers. Glucitol. Galactitol. Russ. J. Struct. Chem. 36, 430 (1995).

    CAS  Google Scholar 

  16. 16.

    R.C.T. Slade, C.M. Bambrough, and R.T. Williams: An incoherent inelastic neutron scattering investigation of the vibrational spectrum of phenyl-modified (C6H5–) mesoporous silica and its variations in the presence of sorbed benzene (C6H6) and of sorbed deuteriobenzene (C6D6). Phys. Chem. Chem. Phys. 4, 5394 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    N. Kitadai, T. Yokoyama, and S. Nakashima: ATR-IR spectroscopic study of L-lysine adsorption on amorphous silica. J. Colloid Interface Sci. 329, 31 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    K.S.N. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985).

    CAS  Article  Google Scholar 

  19. 19.

    J.M. Rosenholm and M. Lindén: Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J. Controlled Release 128, 157 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    M.A. Hughes: The structure-function relationship of silica polyamine composites. Ph.D. Thesis, The University of Montana, Missoula, MT, 2007.

    Google Scholar 

  21. 21.

    Z. Aksu, A. Idil Tatli, and Ö. Tunc: A comparative adsorption/biosorption study of acid blue 161: Effect of temperature on equilibrium and kinetic parameters. Chem. Eng. J. 142, 23 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Z. Chen, D. Pierre, H. Hea, S. Tanc, C. Pham-Huyd, H. Honga, and J. Huang: Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int. J. Pharm. 405, 153 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Z. Liu, A.C. Fan, and K. Rakhra: Supramolecular stacking of doxorubicin on carbon nanotubes for in vitro cancer therapy. Angew. Chem. Int. Ed. 121, 7804 (2009).

    Article  Google Scholar 

  24. 24.

    Q. Hu, J.J. Li, Z.P. Hao, L.D. Li, and S.Z. Qiao: Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem. Eng. J. 149, 281 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    D. Brühwiler: Postsynthetic functionalization of mesoporous silica. Nanoscale 2, 887 (2010).

    Article  Google Scholar 

  26. 26.

    A. Darga, J. Kecht, and T. Bein: Probing the intrapore surface of phenyl-substituted nanoscale mesoporous silica piezoelectric sorption measurements in thin films. Langmuir 23, 12915 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    S.K. Parida, S. Dash, S. Patel, and B.K. Mishra: Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 121, 77 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E.V. Parfenyuk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alyoshina, N., Parfenyuk, E. Effect of surface properties of mesoporous silica on adsorption of mesoionic compound molsidomine. Journal of Materials Research 27, 2858–2866 (2012). https://doi.org/10.1557/jmr.2012.329

Download citation