Synthesis, luminescence, and photocatalytic activity of KLa2Ti3O9.5:Er3+ nanocrystals for water decomposition to hydrogen

Abstract

KLa2Ti3O9.5 and KLa2Ti3O9.5:Er3+ nanocrystals were successfully synthesized using a hydrothermal method and a subsequent calcination treatment. The band gap (Eg) of the KLa2Ti3O9.5 nanocrystals was calculated to be about 2.56 eV by means of the reflectance diffusion technique. Under 980-nm excitation, the KLa2Ti3O9.5:Er3+ nanocrystals emitted intense green (2H11/2/4S3/24I15/2) and red (4F9/24I15/2) upconversion (UC) luminescence. In comparison with pure KLa2Ti3O9.5, the KLa2Ti3O9.5:Er3+ nanocrystals exhibited a higher activity for water splitting into H2 under simulated solar light irradiation. We suggest that the enhancement of photocatalytic activity is related to the Brunauer-Emmett-Teller (BET) surface area and UC luminescence of KLa2Ti3O9.5:Er3+.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

REFERENCES

  1. 1.

    G. Wang, Q. Peng, and Y. Li: Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322 (2011).

    Article  Google Scholar 

  2. 2.

    M. El-Sayed: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    F. Williams, S. Huang, Z. Ming, Y. Kao, G. Smith, E. Goldburt, R. Hodel, B. Kulkarni, J. Veliadis, and R. Bhargava: X-ray excited luminescence and local structures in Tb-doped Y2O3 nanocrystals. J. Appl. Phys. 83, 5404 (1998).

    Article  Google Scholar 

  4. 4.

    X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan: Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects. J. Phys. Chem. C 111, 13611 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Kim, Y. Yang, S. Ha, S. Cho, Y. Kim, H. Kim, H. Yang, and Y. Kim: Mixed-ligand nanoparticles of chlorobenzenemethanethiol and n-octanethiol as chemical sensors. Sens. Actuators, B 106, 189 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    R. Bhargava, D. Gallaghar, X. Hong, and A. Nurmikko: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    X. Wang and Y. Li: Synthesis and formation mechanism of manganese dioxides nanowires/nanorods. Chem. Eur. J. 9, 5627 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    M. Cao, Y. Wang, Y. Qi, C. Guo, and C. Hu: Synthesis and characterization of MgF2 and KMgF3 nanorods. J. Solid State Chem. 177, 2205 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    M. Schwuger, K. Stickdom, and R. Schomacker: Microemulsions in technical processes. Chem. Rev. 95, 849 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    L. Wang and Y. Li: Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    A. Patra, C. Friend, R. Kapoor, and N. Prasad: Upconversion in Er3+:ZrO2 nanocrystals. J. Phys. Chem. B 106, 1909 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Tao, G. Zhao, W. Zhang, and S. Xia: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    Z. Xia and P. Du: Synthesis and upconversion luminescence properties of CaF2:Yb3+, Er3+ nanoparticles obtained from SBA-15 template. J. Mater. Res. 25, 2035 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    G. Wang, W. Qin, J. Zhang, J. Zhang, J. Zhang, Y. Wang, C. Cao, L. Wang, G. Wei, P. Zhu, and R. Kim: Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles. J. Phys. Chem. C 112, 12161 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    F. Wang, Y. Han, C. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Article  Google Scholar 

  17. 17.

    S. Mao and X. Chen: Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 31, 619 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    A. Linsebigler, G. Lu, and J. Yates: Photocatalysis on TiOn surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    A. Hagfeldt and M. Graetzel: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    M. Tian, W. Shangguan, J. Yuan, L. Jiang, M. Chen, J. Shi, Z. Ouyang, and S. Wang: K4Ce2M10O30 (M = Ta, Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition. Appl. Catal., A 309, 76 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    K. Maeda, K. Teramura, and K. Domen: Development of cocatalysts for photocatalytic overall water splitting on (Gal-xZnx)(N1-xOx) solid solution. Catal. Surv. Asia 11, 145 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    S. Ikeda, M. Hara, J. Kondo, and K. Domen: Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chem. Mater. 10, 72 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    Z. Gönen, D. Paluchowski, P. Zavalij, B. Eichhorn, and J. Gopalakrishnan: Reversible cation/anion extraction from K2La2Ti3O10: Formation of new layered titanates, KLa2Ti3O9.5 and La2Ti3O9. Inorg. Chem. 45, 8736 (2006).

    Article  Google Scholar 

  24. 24.

    A. Kudo and T. Sakata: Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures: Importance of the hole trap process. J. Phys. Chem. 99, 15963 (1995).

    CAS  Article  Google Scholar 

  25. 25.

    A. Kudo, I. Tsuji, and H. Kato: AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem. Commun. 17, 1958 (2002).

    Article  Google Scholar 

  26. 26.

    J. Zhang, F. Shi, D. Chen, J. Gao, Z. Huang, X. Ding, and C. Tang: Self-assembled 3-D architectures of BiOBr as a visible light-driven photo-catalyst. Chem. Mater. 20, 2937 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    M. Pollnau, D. Gamelin, S. Lüthi, and H. Güdel: Power dependence of upconversion luminescence in lanthanide and transition–metal–ion systems. Phys. Rev. B 61, 3337 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    N. Fan, Y. Chen, Q. Feng, C. Wang, K. Pan, W. Zhou, Y. Li, H. Hou, and G. Wang: Enhanced photocatalytic activity and upconversion luminescence of flower-like hierarchical Bi2MoO6 microspheres by Er3+ doping. J. Mater. Res. 27, 1 (2012).

    Article  Google Scholar 

  29. 29.

    N. Zu, H. Yang, and Z. Dai: Different processes responsible for blue pumped, ultraviolet and violet luminescence in high-concentrated Er3+:YAG and low-concentrated Er3+:YAP crystals. Phys. B 403, 174 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    H. Xu and Z. Jiang: Dynamics of visible-to-ultraviolet upconversion in YAlO3:1% Er3+. Chem. Phys. 287, 155 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    H. Yang, Z. Dai, and Z. Sun: Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2 nm excitation. J. Lumin. 124, 207 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10979032, 21001042, and 21171052), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0959), the Postdoctoral Science Foundation of Heilongjiang Province (Grant No. LBH-Q11009), and the Youth Foundation for Distinguished Young Scholars of Heilongjiang University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., Qu, Y., Wang, G. et al. Synthesis, luminescence, and photocatalytic activity of KLa2Ti3O9.5:Er3+ nanocrystals for water decomposition to hydrogen. Journal of Materials Research 27, 2925–2929 (2012). https://doi.org/10.1557/jmr.2012.322

Download citation