Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors


The material characteristics of single-walled carbon nanotubes (SWCNTs) influence the performance of SWCNT thin-film transistors (TFTs). In this study, a density gradient ultracentrifugation method was used to sort surfactant (sodium deoxycholate)-dispersed SWCNTs by length. SWCNTs of 150 ± 33 nm and 500 ± 91 nm long were fabricated into TFTs. The results show that the performance of SWCNT-TFTs is tube length dependent. TFTs fabricated using 500-nm long tubes have maximum on/off ratio around 105 with the mobility at ∼0.15 cm2/(V s), which is much higher than that of TFTs using 150-nm long tubes. Shorter tubes need higher tube density to form semiconducting paths, leading to lower on/off ratio and high contact resistance. Surfactant-wrapped SWCNTs will bundle into ropes of different size when tube density is high. It is critical to control tube length as well as surfactant residue content to build high performance SWCNT-TFTs.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    X.J. Zhou, J.Y. Park, S.M. Huang, J. Liu, and P.L. McEuen: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005).

    Article  Google Scholar 

  2. 2.

    H.J. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y.R. Lu: Electrical transport properties and field effect transistors of carbon nanotubes. Nano 1(1), 1 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    S. Banerjee, T. Hemraj-Benny, and S.S. Wong: Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5(6), 841 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    M.C. Hersam: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3(7), 387 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    J. Liu and M.C. Hersam: Recent developments in carbon nanotube sorting and selective growth. MRS Bull. 35(4), 315 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    S.B. Yang, B.S. Kong, D.H. Jung, Y.K. Baek, C.S. Han, S.K. Oh, and H.T. Jung: Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4), 1361 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Q. Cao and J.A. Rogers: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21(1), 29 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    M.D. Lay, J.P. Novak, and E.S. Snow: Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett. 4(4), 603 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Asada, F. Nihey, S. Ohmori, H. Shinohara, and T. Saito: Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 23(40), 4631 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Asada, Y. Miyata, Y. Ohno, R. Kitaura, T. Sugai, T. Mizutani, and H. Shinohara: High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 22(24), 2698 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    C.W. Lee, C.H. Weng, L. Wei, Y. Chen, M.B. Chan-Park, C.H. Tsai, K.C. Leou, C.H.P. Poa, J.L. Wang, and L.J. Li: Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 112(32), 12089 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    E.S. Snow, J.P. Novak, P.M. Campbell, and D. Park: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    L. Hu, D.S. Hecht, and G. Gruner: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    M. Ishida and F. Nihey: Estimating the yield and characteristics of random network carbon nanotube transistors. Appl. Phys. Lett. 92(16), 163507 (2008).

    Article  Google Scholar 

  15. 15.

    C. Kocabas, N. Pimparkar, O. Yesilyurt, S.J. Kang, M.A. Alam, and J.A. Rogers: Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    N. Pimparkar, C. Kocabas, S.J. Kang, J. Rogers, and M.A. Alam: Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 28(7), 593 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    N. Pimparkar, J. Guo, and M.A. Alam: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).

    Article  Google Scholar 

  18. 18.

    S. Kumar, J.Y. Murthy, and M.A. Alam: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), (2005).

    Google Scholar 

  19. 19.

    Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, and H. Shinohara: Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 4(10), 963 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    N. Pimparkar, J. Guo, and M.A. Alam: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).

    Article  Google Scholar 

  21. 21.

    J.A. Fagan, J.R. Simpson, B.J. Bauer, S.H.D. Lacerda, M.L. Becker, J. Chun, K.B. Migler, A.R.H. Walker, and E.K. Hobbie: Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129(34), 10607 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    X.Y. Huang, R.S. McLean, and M. Zheng: High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77(19), 6225 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    J.P. Casey, S.M. Bachilo, C.H. Moran, and R.B. Weisman: Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy. ACS Nano 2(8), 1738 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    J. Chun, J.A. Fagan, E.K. Hobbie, and B.J. Bauer: Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80(7), 2514 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    J.A. Fagan, M.L. Becker, J. Chun, and E.K. Hobbie: Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 20(9), 1609 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    J.A. Fagan, M.L. Becker, J.H. Chun, P.T. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, and E.K. Hobbie: Centrifugal length separation of carbon nanotubes. Langmuir 24(24), 13880 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    E.K. Hobbie, J.A. Fagan, J. Obrzut, and S.D. Hudson: Microscale polymer-nanotube composites. ACS Appl. Mater. Interfaces 1(7), 1561 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Asada, Y. Miyata, K. Shiozawa, Y. Ohno, R. Kitaura, T. Mizutani, and H. Shinohara: Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115(1), 270 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, and M.C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1(1), 60 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    E.J.F. Carvalho and M.C. dos Santos: Role of surfactants in carbon nanotubes density gradient separation. ACS Nano. 4(2), 765 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    R. Si, K. Wang, T. Chen, and Y. Chen: Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Anal. Chim. Acta 708(1–2), 28 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    W. Kim, A. Javey, O. Vermesh, O. Wang, Y.M. Li, and H.J. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3(2), 193 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    G.E. Pike and C.H. Seager: Percolation and conductivity-computer study. 1. Phys. Rev. B: Condens. Matter 10(4), 1421 (1974).

    Article  Google Scholar 

  35. 35.

    C.W. Lee, X.D. Han, F.M. Chen, J. Wei, Y. Chen, M.B. Chan-Park, and L.J. Li: Solution-processable carbon nanotubes for semiconducting thin-film transistor devices. Adv. Mater. 22(11), 1278 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by National Research Foundation, Singapore (NRF-CRP2-2007-02), and Ministry of Education, Singapore (MOE2011-T2-2-062).

Author information



Corresponding author

Correspondence to Yuan Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Si, R., Wang, H., Wei, L. et al. Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors. Journal of Materials Research 28, 1004–1011 (2013). https://doi.org/10.1557/jmr.2012.321

Download citation