Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3

Abstract

We review our work on combinatorial search and investigation of morphotropic phase boundaries (MPBs) in chemically substituted BiFeO3 (BFO). Utilizing the thin-film composition spread technique, we discovered that rare-earth (RE = Sm, Gd, and Dy) substitution into the A-site of the BFO lattice results in a structural phase transition from the rhombohedral to the orthorhombic phase. At the structural boundary, both the piezoelectric coefficient and the dielectric constant are substantially enhanced. It is also found that the observed MPB behavior can be universally described by the average A-site ionic radius as a critical parameter, indicating that chemical pressure effect due to substitution is the primary cause for the MPB behavior in RE-substituted BFO. Our combinatorial investigations were further extended to the A- and B-site cosubstituted BFO in the pseudoternary composition spread of (Bi1_xSmx)(Fe1_y,Scy,)O3. Clustering analysis of structural and ferroelectric property data of the fabricated pseudoternary composition spread reveals close correlations between the structural and ferroelectric properties. We show that the evolution in structural and ferroelectric properties is controlled solely by the A-site Sm substitution and not the B-site Sc substitution.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 10
FIG. 8
FIG. 9
FIG. 11
FIG. 12
FIG. 13

References

  1. 1.

    H. Koinuma and I. Takeuchi: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579–633 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, and H. Koinuma: Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    M. Murakami, K-S. Chang, M.A. Aronova, C-L. Lin, M.H. Yu, J. Hattrick-Simpers, M. Wuttig, I. Takeuchi, C. Gao, B. Hu, S.E. Lofland, L.A. Knauss, and L.A. Bendersky: Tunable multi-ferroic properties in nanocomposite PbTiO3-CoFe2O4 epitaxial thin films. Appl. Phys. Lett. 87, 112901 (2005).

    Article  CAS  Google Scholar 

  5. 5.

    D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L.A. Bendersky, S.E. Lofland, M. Wuttig, and I. Takeuchi: Giant magnetostriction in annealed Co1_xFex thin-films. Nat. Commun. 2, 518 (2011).

    Article  CAS  Google Scholar 

  6. 6.

    N.M. Aimon, D.H. Kim, H.K. Choi, and C.A. Ross: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    S-E. Park and T.R. Shrout: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    R. Guo, L.E. Cross, S-E. Park, B. Noheda, D.E. Cox, and G. Shirane: Origin of the high piezoelectric response in PbZr1_xTixO3. Phys. Rev. Lett. 84, 5423 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Kutnjak, J. Petzelt, and R. Blinc: The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    H. Fu and R.E. Cohen: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelec-trics. Nature 403, 281 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    L. Bellaiche, A. Garcia, and D. Vanderbilt: Electric-field induced polarization paths in Pb(Zr1_xTix)O3 alloys. Phys. Rev. B 64, 060103 (2001).

    Article  CAS  Google Scholar 

  12. 12.

    I. Takeuchi, O.O. Famodu, J.C. Read, M.A. Aronova, K-S. Chang, C. Craciunescu, S.E. Lofland, M. Wuttig, F.C. Wellstood, L. Knauss, and A. Orozco: Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, and R. Ramesh: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    G. Catalan and J.F. Scott: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa: Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Phys. Rev. B 11, 092101 (2008).

    Article  CAS  Google Scholar 

  18. 18.

    G.L. Yuan, S.W. Or, J.M. Liu, and Z.G. Liu: Structural transformation and ferroelectromagnetic behavior in single-phase Bi1_xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89, 052905 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    Y.H. Chu, Q. Zhan, C-H. Yang, M.P. Cruz, L.W. Martin, T. Zhao, P. Yu, R. Ramesh, P.T. Joseph, I.N. Lin, W. Tian, and D.G. Schlom: Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).

    Article  CAS  Google Scholar 

  20. 20.

    V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, and A.L. Kholkin: Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    W-M. Zhu, L.W. Su, Z-G. Ye, and W. Ren: Enhanced magnetization and polarization in chemically modified multiferroic (1-x) BiFeO3-xDyFeO3 solid solution. Appl. Phys. Lett. 94, 142908 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    C-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, and R. Ramesh: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, and I. Sterianou: Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    K. Kalantari, I. Sterianou, S. Karimi, M.C. Ferrarelli, S. Miao, D.C. Sinclair, and I.M. Reaney: Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv. Funct. Mater. 21, 3737 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    H. Ishiwara: Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12, 603 (2012).

    Article  Google Scholar 

  26. 26.

    I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinsky, O.S. Mantytskaya, N.V. Tereshko, and V.N. Shut: Phase transitions, magnetic and piezoelectric properties of rare-earth-substituted BiFeO3 ceramics. J. Am. Ceram. Soc. 94, 4502 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    I. Levin, M.G. Tucker, H. Wu, V. Provenzano, C.L. Dennis, S. Karimi, T. Comyn, T. Stevenson, R.I. Smith, and I.M. Reaney: Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3. Chem. Mater. 23, 2166 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    S. Fujino, M. Murakami, V. Anbusathaiah, S-H. Lim, V. Nagarajan, C.J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi: Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    D. Kan, L. Palova, V. Anbusathaiah, C-J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, and I. Takeuchi: Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    D. Kan, R. Suchoski, S. Fujino, and I. Takeuchi: Combinatorial investigation of structural and ferroelectric properties of A- and B-site co-doped BiFeO3 thin films. Integr. Ferroelectr. 111, 116 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    C-J. Cheng, D. Kan, S-H. Lim, W.R. McKenzie, P.R. Munroe, L.G. Salamanca-Riba, R.L. Withers, I. Takeuchi, and V. Nagarajan: Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    D. Kan, C-J. Cheng, V. Nagarajan, and I. Takeuchi: Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J. Appl. Phys. 110, 014106 (2011).

    Article  CAS  Google Scholar 

  33. 33.

    C-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, and V. Nagarajan: Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).

    Article  CAS  Google Scholar 

  34. 34.

    V. Nagarajan, A. Stanishevsky, L. Chen, T. Zhao, B-T. Liu, J. Melngailis, A.L. Roytburd, R. Ramesh, J. Finder, Z. Yu, R. Droopad, and K. Eisenbeiser: Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81, 4215 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    D. Kan and I. Takeuchi: Effect of substrate orientation on lattice relaxation of epitaxial BiFeO3 thin films. J. Appl. Phys. 108, 014104 (2010).

    Article  CAS  Google Scholar 

  36. 36.

    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Y.Q. Jia: Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184 (1991).

    CAS  Article  Google Scholar 

  38. 38.

    C-J. Cheng, A.Y. Borisevich, D. Kan, I. Takeuchi, and V. Nagarajan: Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    E. Sawaguchi, H. Maniwa, and S. Hoshino: Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951).

    CAS  Article  Google Scholar 

  40. 40.

    D.I. Woodward, J. Knudsen, and I.M. Reaney: Review of crystal and domain structures in the PbZrxTi1_xO3 solid solution. Phys. Rev. B 72, 104110 (2005).

    Article  CAS  Google Scholar 

  41. 41.

    S. Karimi, I.M. Reaney, I. Levin, and I. Sterianou: Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009).

    Article  CAS  Google Scholar 

  42. 42.

    R.D. Shannon: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).

    CAS  Article  Google Scholar 

  43. 43.

    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006).

    Article  CAS  Google Scholar 

  44. 44.

    R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W.A. Crichton, C.A. Kuntscher, and J. Kreisel: Effect of high pressure on multiferroic BiFeO3. Phys. Rev. B 79, 184110 (2009).

    Article  CAS  Google Scholar 

  45. 45.

    M. Guennou, P. Bouvier, G.S. Chen, B. Dkhil, R. Haumont, G. Garbarino, and J. Kreisel: Multiple high-pressure phase transitions in BiFeO3. Phys. Rev. B 84, 174107 (2011).

    Article  CAS  Google Scholar 

  46. 46.

    S.B. Emery, C-J. Cheng, D. Kan, F.J. Rueckert, S.P. Alpay, V. Nagarajan, I. Takeuchi, and B.O. Wells: Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl. Phys. Lett. 97, 152902 (2010).

    Article  CAS  Google Scholar 

  47. 47.

    P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, and N.A. Spaldin: Theoretical prediction of new high-performance lead-free piezoelec-trics. Chem. Mater. 17, 1376 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    S. Yasui, H. Uchida, H. Nakaki, K. Nishida, H. Funakubo, and S. Koda: Analysis for crystal structure of Bi(Fe, Sc)O3 thin films and their electrical properties. Appl. Phys. Lett. 91, 022906 (2007).

    Article  CAS  Google Scholar 

  49. 49.

    M. Marezio, J.P. Remeika, and P.D. Dernier: The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr., Sect. B 26, 2008 (1970).

    CAS  Article  Google Scholar 

  50. 50.

    E.N. Maslen, V.A. Streltsov, and N. Ishizawa: A synchrotron x-ray study of the electron density in SmFeO3. Acta Crystallogr., Sect. B 52, 406 (1996).

    Article  Google Scholar 

  51. 51.

    A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, M. Maie, T. Nagai, Y. Matsui, S.Y. Stefanovich, B.I. Lazoryak, and E. Takayama-Muromachi: BiScO3: Centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128, 706 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    M.K. Singh, H.M. Jang, S. Ryu, and M-H. Jo: Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006).

    Article  CAS  Google Scholar 

  53. 53.

    M.K. Singh, S. Ryu, and H.M. Jang: Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 72, 132101 (2005).

    Article  CAS  Google Scholar 

  54. 54.

    S. Venugopalan, M. Dutta, A.K. Ramdas, and J.P. Remeika: Magnetic and vibrational excitations in rare-earth orthoferrites: A Raman scattering study. Phys. Rev. B 31, 1490 (1985).

    CAS  Article  Google Scholar 

  55. 55.

    S. Johnson: Hierarchical clustering schemes. Psychometrika 32, 241 (1967).

    CAS  Article  Google Scholar 

  56. 56.

    C.J. Long, J. Hattrick-Simpers, M. Murakami, R.C. Srivastava, I. Takeuchi, V.L. Karen, and X. Li: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78, 072217 (2007).

    CAS  Article  Google Scholar 

  57. 57.

    G. Barr, W. Dong, and C.J. Gilmore: High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis. J. Appl. Crystallogr. 37, 243 (2004).

    CAS  Article  Google Scholar 

  58. 58.

    G. Barr, G. Cunningham, W. Dong, C.J. Gilmore, and T. Kojima: High-throughput powder diffraction V: The use of Raman spectroscopy with and without x-ray powder diffraction data. J. Appl. Crystallogr. 42, 706 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    J. Scheidtmann, A. Frantzen, G. Frenzer, and W.F. Maier: A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Technol. 16, 119 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the work of S. Fujino and R. Suchoski (University of Maryland) for film fabrications and P-E loop measurements; V. Anbusathaiah, C.J. Cheng, and V. Nagarajan (University of South Wales) for PFM and TEM studies; A.Y. Borisevich (Oak Ridge National Labs) for TEM observations; S.B. Emery, B.O. Wells, and S.P. Alpay (University of Connecticut) for synchrotron XRD measurements; and L. Palova and K.M. Rabe (Rutgers University) for first-principles calculations. This work was supported by NSF-MRSEC at the University of Maryland, DMR 05-20471. This work was also supported by ARO MURI W911NF-07-1-0410 and the W.M. Keck Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kan.

Additional information

Address all correspondence to this author.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kan, D., Long, C.J., Steinmetz, C. et al. Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3. Journal of Materials Research 27, 2691–2704 (2012). https://doi.org/10.1557/jmr.2012.314

Download citation