Nanoindentation creep in polycarbonate and syndiotactic polystyrene

Abstract

This study focuses on nanoindentation creep in polycarbonate (PC) and syndiotactic polystyrene (sPS) throughout the transient and steady-state regions. The viscoelastic Burgers model is used to explain transient creep data, while the power-law creep model is used to interpret steady-state creep data. The Newtonian shear viscosity of the Maxwell element and Young’s modulus of the Kelvin element are greater for the creep period than for the preload period, and an opposite trend is noted in the Newtonian shear viscosity of the Kelvin element and Young’s modulus of the Maxwell element. The fact that the Young’s moduli of Maxwell and Kelvin elements in the creep period are different from those in the preload period implies that a stress-induced mesomorphic structure forms or that crystallization occurs in nanoindentation creep. While the strain rate increases with decreasing preload period, the stress exponent factor is almost the same for all preload periods.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
TABLE I
TABLE II
FIG. 3
TABLE III

References

  1. 1.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    W.R. LaFontaine, B. Yost, R.D. Black, and C.Y. Li: Indentation load relaxation experiments with indentation depth in the sub-micron range. J. Mater. Res. 5, 2100 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    S.A. Syed and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  4. 4.

    G. Feng and A.H.W. Ngan: The effects of creep on elastic modulus measurement using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.1.

    Google Scholar 

  5. 5.

    H. Li and A.H.W. Ngan: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    B. Tang, A.H.W. Ngan, and W.W. Lu: Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos. Mag. 86(33-35), 5653 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    A. Jager, R. Lackner, and J. Eberhardsteiner: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42(3), 293 (2007).

    Article  Google Scholar 

  8. 8.

    M.L. Oyen: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55(11), 3633 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    S.T. Choi, S.J. Jeong, and Y.Y. Earmme: Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip. Scr. Mater. 58(3), 199 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    C.K. Liu, S. Lee, L.P. Sung, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100(3), 033503 (2006).

    Article  Google Scholar 

  11. 11.

    C.C. Huang, M.K. Wei, and S. Lee: Transient and steady-state nanoindentation creep of polymer materials. Int. J. Plast. 27, 1093 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31(19), 2395 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    S. Yang, Y.W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95(7), 3655 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    C.A. Tweedie and K.J.V. Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21(6), 1576 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    R. Goodall and T.W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54(20), 5489 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    W. Brostow and H.E. Hagg Lobland: Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 21(9), 2422 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    J.R. Mercier, J.J. Aklonis, M. Lift, and A.V. Tobolsky: Viscoelastic behavior of the polycarbonate of bisphenol A. J. Appl. Polym. Sci. 9(2), 447 (1965).

    CAS  Article  Google Scholar 

  18. 18.

    M-S.S. Wu: Intrinsic birefringence of amorphous poly(bisphenol-A carbonate). J. Appl. Polym. Sci. 32, 3263 (2006).

    Article  Google Scholar 

  19. 19.

    R.J. Yan, A. Ajji, D.M. Shinozaki, and M.M. Dumoulin: Uniaxial drawing behavior of syndiotactic polystyrene. Polymer 41, 1077 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    A. Strojny, X. Xia, A. Tsou, and W.W. Gerberich: Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties. J. Adhes. Sci. Technol. 12(12), 1299 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    C. D’Aniello, P. Rizzo, and G. Guerra: Polymorphism and mechanical properties of syndiotactic polystyrene films. Polymer 46, 11435 (2005).

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Science Council, Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanboh Lee.

Additional information

Address all correspondence to this author

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, CC., Wei, MK., Harmon, J.P. et al. Nanoindentation creep in polycarbonate and syndiotactic polystyrene. Journal of Materials Research 27, 2746–2751 (2012). https://doi.org/10.1557/jmr.2012.30

Download citation