Formation of nanoporous copper through dealloying of dual-phase Cu-Mn-Al alloy: The evolution of microstructure and composition


A freestanding bulk nanoporous copper with ultralow density has been fabricated through dealloying of as-cast dual-phase Cu1Mn1Al8 alloy, and the dealloying behavior was investigated systematically. The experimental results show that due to different electrochemical activities, the Al11Cu5Mn3 phase of the dual-phase precursor alloy dissolved before AlCu2Mn, which corresponds to the dramatical evolutions of microstructure and composition. Additionally, a formation pattern based upon a mechanism combined “dissolution-redeposition” pattern, “phase-separation” pattern, and “coarsening” process has been built to describe the evolution process, which includes four stages, sequentially defined as “dissolution of Al11Cu5Mn3,” “redeposition of Cu atoms,” “dealloying of AlCu2Mn,” and “coarsening.”

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmiiller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).

    Article  Google Scholar 

  2. 2.

    A.M. Hodge, J.R. Hayes, J.A. Caro, J. Biener, and A.V. Hamza: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, and P.J. Gao: Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J. Phys. Chem. C 112, 14781 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    X.Y. Lang, P.F. Guan, L. Zhang, T. Fujita, and M.W. Chen: Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold. J. Phys. Chem. C 113, 10956 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    S. Kameoka and A.P. Tsai: CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal. Lett. 121, 337 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    V. Zielasek, B. Jiirgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, and M. Baumer: Gold catalysts: Nanoporous gold foams. Angew. Chem. Int. Ed. 45, 8241 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    A.J. Forty: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    H. Dong and X.D. Cao: Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity. J. Phys. Chem. C 113, 603 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    C.X. Ji and P.C. Searson: Synthesis and characterization of nanoporous gold nanowires. J. Phys. Chem. B 107, 4494 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    N. A. Senior and R.C. Newman: Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 17, 2311 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    M. Hakamada and M. Mabuchi: Nanoporous gold prism micro-assembly through a self-organizing route. Nano Lett. 6, 882 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    R. Morrish, K. Dorame, and A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    L.Y. Chen, J.S. Yu, T. Fujita, and M.W. Chen: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Fund. Mater. 19, 1221 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    L. Sun, C.L. Chien, and P.C. Searson: Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16, 3125 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    J.K. Chang, S.H. Hsu, I.W. Sun, and W.T. Tsai: Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys. J. Phys. Chem. C 112, 1371 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25, J. Mater. Res. 18, 216 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    J. Snyder, P. Asanithi, A.B. Dalton, and J. Erlebacher: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, and M.W. Chen: Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater. 20, 4548 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    T. Aburada, J.M. Fitz-Gerald, and J.R. Scully: Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros. Sci. 53, 1627 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue: Dealloying of Cu-Zr-Ti bulk metallic glass in hydrofluoric acid solution. Mater.Trans. 50, 1255 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    H-B. Lu, Y. Li, and F-H. Wang: Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr. Mater. 56, 165 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    X.G. Wang, Z. Qi, C.C. Zhao, W.M. Wang, and Z.H. Zhang: Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys. J. Phys. Chem. C 113, 13139 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, and Y.L. Xing: Influence of phase constituent and proportion in initial Al-Cu alloys on formation of monolithic nanoporous copper through chemical dealloying in an alkaline solution. Corros. Sci. 53, 809 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, and Y.L. Xing: A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al-Cu alloy in an alkaline solution. Microporous Mesoporous Mater. 138, 1 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Z. Qi, C.C. Zhao, X.G. Wang, J. Lin, W. Shao, Z. Zhang, and X.F. Bian: Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J. Phys. Chem. C 113, 6694 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng and Y.L. Xing: Dealloying behavior of dual-phase Al 40 atom % Cu alloy in an alkaline solution. J. Electrochem. Soc. 158, D91 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    C.C. Zhao, Z. Qi, X.G. Wang, and Z.H. Zhang: Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys. Corros. Sci. 51, 2120 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    C.C. Zhao, X.G. Wang, Z. Qi, H. Ji, and Z.H. Zhang: On the electrochemical dealloying of Mg-Cu alloys in a NaCl aqueous solution. Corros. Sci. 52, 3962 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Q. Zhang, X.G. Wang, Z. Qi, Y. Wang, and Z.H. Zhang: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta 54, 6190 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    C. Xu, R. Wang, M. Chen, Y. Zhang, and Y. Ding. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys. 239, 12 (2010).

    Google Scholar 

  33. 33.

    A.J. Forty and G. Rowlands: A possible model for corrosion pitting and tunneling in noble-metal alloys. Philos. Mag. A 43, 171 (1981).

    CAS  Article  Google Scholar 

  34. 34.

    A.J. Forty and P. Durkin: A micromorphological study of the dissolution of silver-gold alloys in nitric acid. Philos. Mag. A 42, 295 (1980).

    CAS  Article  Google Scholar 

  35. 35.

    H.W. Pickering and C. Wagner: Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 114, 698 (1967).

    CAS  Article  Google Scholar 

  36. 36.

    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    J. Erlebacher and K. Sieradzki: Pattern formation during dealloying. Scr. Mater. 49, 991 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    J. Erlebacher: An atomistic description of dealloying. J. Electrochem. Soc. 151, C614 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, and J. Weissmiiller: Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006)

    CAS  Article  Google Scholar 

  40. 40.

    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, S.S. An, and Y.L. Xing. A general dealloying strategy to nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions. Corros. Sci. 58, 133 (2012).

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge funding from Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110181110002). Also, we are grateful to Dr. W.B. Liu for useful discussions.

Author information



Corresponding author

Correspondence to Lixian Lian.

Additional information

Address all correspondence to this author

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, Y., Liu, Y., Lian, L. et al. Formation of nanoporous copper through dealloying of dual-phase Cu-Mn-Al alloy: The evolution of microstructure and composition. Journal of Materials Research 27, 2771–2778 (2012).

Download citation