Abstract
A freestanding bulk nanoporous copper with ultralow density has been fabricated through dealloying of as-cast dual-phase Cu1Mn1Al8 alloy, and the dealloying behavior was investigated systematically. The experimental results show that due to different electrochemical activities, the Al11Cu5Mn3 phase of the dual-phase precursor alloy dissolved before AlCu2Mn, which corresponds to the dramatical evolutions of microstructure and composition. Additionally, a formation pattern based upon a mechanism combined “dissolution-redeposition” pattern, “phase-separation” pattern, and “coarsening” process has been built to describe the evolution process, which includes four stages, sequentially defined as “dissolution of Al11Cu5Mn3,” “redeposition of Cu atoms,” “dealloying of AlCu2Mn,” and “coarsening.”
This is a preview of subscription content, access via your institution.






References
- 1.
C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmiiller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).
- 2.
A.M. Hodge, J.R. Hayes, J.A. Caro, J. Biener, and A.V. Hamza: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).
- 3.
M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).
- 4.
H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, and P.J. Gao: Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J. Phys. Chem. C 112, 14781 (2008).
- 5.
X.Y. Lang, P.F. Guan, L. Zhang, T. Fujita, and M.W. Chen: Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold. J. Phys. Chem. C 113, 10956 (2009).
- 6.
S. Kameoka and A.P. Tsai: CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal. Lett. 121, 337 (2008).
- 7.
V. Zielasek, B. Jiirgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, and M. Baumer: Gold catalysts: Nanoporous gold foams. Angew. Chem. Int. Ed. 45, 8241 (2006).
- 8.
A.J. Forty: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).
- 9.
Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).
- 10.
H. Dong and X.D. Cao: Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity. J. Phys. Chem. C 113, 603 (2009).
- 11.
C.X. Ji and P.C. Searson: Synthesis and characterization of nanoporous gold nanowires. J. Phys. Chem. B 107, 4494 (2003).
- 12.
N. A. Senior and R.C. Newman: Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 17, 2311 (2006).
- 13.
M. Hakamada and M. Mabuchi: Nanoporous gold prism micro-assembly through a self-organizing route. Nano Lett. 6, 882 (2006).
- 14.
R. Morrish, K. Dorame, and A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).
- 15.
L.Y. Chen, J.S. Yu, T. Fujita, and M.W. Chen: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Fund. Mater. 19, 1221 (2009).
- 16.
L. Sun, C.L. Chien, and P.C. Searson: Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16, 3125 (2004).
- 17.
J.K. Chang, S.H. Hsu, I.W. Sun, and W.T. Tsai: Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys. J. Phys. Chem. C 112, 1371 (2008).
- 18.
D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25, J. Mater. Res. 18, 216 (2003).
- 19.
J. Snyder, P. Asanithi, A.B. Dalton, and J. Erlebacher: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).
- 20.
J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, and M.W. Chen: Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater. 20, 4548 (2008).
- 21.
T. Aburada, J.M. Fitz-Gerald, and J.R. Scully: Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros. Sci. 53, 1627 (2011).
- 22.
H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue: Dealloying of Cu-Zr-Ti bulk metallic glass in hydrofluoric acid solution. Mater.Trans. 50, 1255 (2009).
- 23.
H-B. Lu, Y. Li, and F-H. Wang: Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr. Mater. 56, 165 (2007).
- 24.
X.G. Wang, Z. Qi, C.C. Zhao, W.M. Wang, and Z.H. Zhang: Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys. J. Phys. Chem. C 113, 13139 (2009).
- 25.
W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, and Y.L. Xing: Influence of phase constituent and proportion in initial Al-Cu alloys on formation of monolithic nanoporous copper through chemical dealloying in an alkaline solution. Corros. Sci. 53, 809 (2011).
- 26.
W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, and Y.L. Xing: A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al-Cu alloy in an alkaline solution. Microporous Mesoporous Mater. 138, 1 (2011).
- 27.
Z. Qi, C.C. Zhao, X.G. Wang, J. Lin, W. Shao, Z. Zhang, and X.F. Bian: Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J. Phys. Chem. C 113, 6694 (2009).
- 28.
W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng and Y.L. Xing: Dealloying behavior of dual-phase Al 40 atom % Cu alloy in an alkaline solution. J. Electrochem. Soc. 158, D91 (2011).
- 29.
C.C. Zhao, Z. Qi, X.G. Wang, and Z.H. Zhang: Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys. Corros. Sci. 51, 2120 (2009).
- 30.
C.C. Zhao, X.G. Wang, Z. Qi, H. Ji, and Z.H. Zhang: On the electrochemical dealloying of Mg-Cu alloys in a NaCl aqueous solution. Corros. Sci. 52, 3962 (2010).
- 31.
Q. Zhang, X.G. Wang, Z. Qi, Y. Wang, and Z.H. Zhang: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta 54, 6190 (2009).
- 32.
C. Xu, R. Wang, M. Chen, Y. Zhang, and Y. Ding. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys. 239, 12 (2010).
- 33.
A.J. Forty and G. Rowlands: A possible model for corrosion pitting and tunneling in noble-metal alloys. Philos. Mag. A 43, 171 (1981).
- 34.
A.J. Forty and P. Durkin: A micromorphological study of the dissolution of silver-gold alloys in nitric acid. Philos. Mag. A 42, 295 (1980).
- 35.
H.W. Pickering and C. Wagner: Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 114, 698 (1967).
- 36.
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
- 37.
J. Erlebacher and K. Sieradzki: Pattern formation during dealloying. Scr. Mater. 49, 991 (2003).
- 38.
J. Erlebacher: An atomistic description of dealloying. J. Electrochem. Soc. 151, C614 (2004).
- 39.
S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, and J. Weissmiiller: Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006)
- 40.
W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, S.S. An, and Y.L. Xing. A general dealloying strategy to nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions. Corros. Sci. 58, 133 (2012).
Acknowledgments
The authors would like to acknowledge funding from Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110181110002). Also, we are grateful to Dr. W.B. Liu for useful discussions.
Author information
Affiliations
Corresponding author
Additional information
Address all correspondence to this author
Rights and permissions
About this article
Cite this article
Tang, Y., Liu, Y., Lian, L. et al. Formation of nanoporous copper through dealloying of dual-phase Cu-Mn-Al alloy: The evolution of microstructure and composition. Journal of Materials Research 27, 2771–2778 (2012). https://doi.org/10.1557/jmr.2012.307
Received:
Accepted:
Published:
Issue Date: