Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics


NiMn2−xMgxO4 (0 ≤ x ≤ 0.4) ceramics have been studied by powder x-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis. NiMn2−xMgxO4 ceramics are all single-phase with spinel structure. XRD and IR spectroscopy results indicate that Mg2+ ions occupy A- and B-site of spinel lattice, which inhibits the formation of cation vacancies. Moreover, Mg2+ substitution enhances the tolerance of the oxidation in air. As a result, Mg substitution leads to a significant increase in ρ25, temperature coefficient of resistivity B25/85, and activation energy, which improves the aging property of NiMn2−xMgxO4 negative temperature coefficient thermistors.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    J.G. Fagan and V.R.W. Amarkoon: Reliability and reproducibility of ceramic sensors: Part I NTC thermistor. Am. Ceram. Soc. Bull. 72, 70 (1993).

    CAS  Google Scholar 

  2. 2.

    W.M. Wang, X.C. Liu, F. Gao, and C.S. Tian: Synthesis of nanocrystalline Ni1Co0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram. Int. 33, 459 (2007).

    Article  Google Scholar 

  3. 3.

    V.A.M. Brabers and J. Terhell: Electrical conductivity and cation valencies in nickel manganite. Phys. State Sol. A 69, 325 (1982).

    CAS  Article  Google Scholar 

  4. 4.

    I.G. Austin and N.F. Mott: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).

    CAS  Article  Google Scholar 

  5. 5.

    S. Jagtap, S. Rane, S. Gosavi, and D. Amalnerkar: Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors. J. Eur. Ceram. Soc. 28, 2501 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, and S. Nahm: The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x≤ 0.075) NTC thermistors. J. Alloy. Comp. 467, 310 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    C. Metzmacher, R. Mikkenie, and W.A. Groen: Indium-containing ceramics with negative temperature coefficient characteristics. J. Eur. Ceram. Soc. 20, 997 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    B. Gillot, J. Lorimier, F. Bernard, V. Nivoix, S. Douard, and Ph. Tailhades: Thermal behavior and cation distribution in nanosized Mo-Co ferrite spinels Mo0.5CoyFe2.5-yO4 (0 ≤ y ≤ 1) studied by DTG, FT-IR and DC conductivity. Mater. Chem. Phys. 61, 199 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    K. Park and J.K. Lee: Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 57, 329 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    K. Park and J.K. Lee: The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Comp. 475, 513 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, and D. Amalnerkar: Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10, 1156 (2010).

    Article  Google Scholar 

  12. 12.

    K. Park, S.J. Kim, J.G. Kim, and S. Nahm: Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4-xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27, 2009 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    G.N. Kustova, E.B. Burgina, G.G. Volkova, T.M. Yurieva, and L.M. Plyasova: IR spectroscopic investigation of cation distribution in Zn–Co oxide catalysts with spinel type structure. J. Mol. Catal. Chem. 158, 293 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Z.B. Wang, C.H. Zhao, P.H. Yang, A.J.A. Winnubst, and C.S. Chen: X-ray diffraction and infrared spectra studies of FexMn2.34−xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, and A. Rousset: Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 109, 229 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    P. Poix: Liaisons interatorniques et propriktds physiques des 268 C, 1139, 1969. composis rniniraus. Sedes, Paris 82 (1968) CR Acad, Sci.

  17. 17.

    B. Gillot, M.E. Guendouzi, M. Kharroubi, P. Tailhades, R. Metz, and A. Rousset: Phase transformation-related kinetic in the oxidation of a manganese mixed oxide with a spinel structure. Mater. Chem. Phys. 24, 199 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    G.D.C. Csete de Györgyfalva and I.M. Reaney: Decomposition of NiMn2O4 spinel: An NTC thermistor material. J. Eur. Ceram. Soc. 21, 2145 (2001).

    Article  Google Scholar 

  19. 19.

    R.D. Waldron: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).

    CAS  Article  Google Scholar 

  20. 20.

    V.M. Ferreira, J.L. Baptista, S. Kamba, and J. Petzelt: Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014 Hz region. J. Mater. Sci. 28, 5894 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Varghese, A. Seema, and K.R. Dayas: Microstructural, electrical and reliability aspects of chromium doped Ni-Mn-Fe-O NTC thermistor materials. Mater. Sci. Eng., B. 149, 47 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    S.E. Dorris and T.O. Mason: Electrical properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71, 379 (1988).

    CAS  Article  Google Scholar 

  23. 23.

    A. Basu, A.W. Brinkman, and R. Schmidt: Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films. J. Eur. Ceram. Soc. 24, 1247 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    R. Metz: Electrical properties of NTC thermistors made of manganite ceramics of general spinel structure: Mn3−xxMxNxO4 (0 ≤ x + x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 35, 4705 (2000).

    CAS  Article  Google Scholar 

Download references


This research was financially supported by the Zhejiang Provincial Science Foundation (No. Y6110475) and the Zhejiang Provincial Fund of Science and Technology (Grant No. 2007C21003).

Author information



Corresponding author

Correspondence to Jiangying Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Zhang, J. Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics. Journal of Materials Research 27, 928–931 (2012). https://doi.org/10.1557/jmr.2012.29

Download citation