Synthesis of TiO2@C core–shell nanostructures with various crystal structures by hydrothermal and postheat treatments


TiO2@C core–shell nanostructures with various crystal structures of TiO2-B, anatase, and rutile were successfully synthesized by a simple hydrothermal process and postheat treatments. As-synthesized precursor hydrogen titanate@carbonaceous nanoribbons transformed into TiO2-B@C nanoribbons at 400 °C and further transformed into anatase and rutile TiO2@C nanoribbons at 700 and 800 °C, respectively. The morphology of nanoribbons can be retained up to 800 °C. The transformation temperature (800 °C) from anatase to rutile phase is lower than that of TiO2 nanofibers without carbon layers and anatase TiO2@C nanoparticles. These results show that the carbon shell plays important roles in promoting the phase transition from anatase to rutile phase and protecting the nanoribbon-like morphology. The formation mechanism of the TiO2@C core–shell nanostructures with various crystal structures was discussed.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    K. Kiatkittipong, J. Scott, and R. Amal: Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties. ACS Appl. Mater. Interfaces 3, 3988 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Y.F. Li and Z.P. Liu: Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. JACS 133, 15743 (2012).

    Article  Google Scholar 

  3. 3.

    A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P.G. Bruce: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    M.V. Koudriachova: Effect of particle size on the phase behavior of Li-intercalated TiO2-rutile. J. Power Sources 196, 6898 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    L. Francioso, A.M. Taurino, A. Forleo, and P. Siciliano: TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuators, B 130, 70 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    A.S. Nair, P.N. Zhu, V.J. Babu, S.Y. Yang, and S. Ramakrishna: Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 21248 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Y.B. Mao and S.S. Wong: Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. JACS 128, 8217 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    D. Eder, I.A. Kinloch, and A.H. Windle: Pure rutile nanotubes. Chem. Commun. 1448 (2006).

    Google Scholar 

  9. 9.

    X.B. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    L.M. Shen, N.Z. Bao, Y.Q. Zheng, A. Gupta, T.C. An, and K. Yanagisawa: Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. J. Phys. Chem. C 112, 8809 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li, H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui, and G.T. Zou: Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47, 9870 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Q. Wang, Z.H. Wen, and J.H. Li: Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Chem. Mater. 19, 927 (2007).

    Article  Google Scholar 

  13. 13.

    J.M. Li, W. Wan, H.H. Zhou, J.J. Li, and D.S. Xu: Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem. Commun. 47, 3439 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    D. Mitoraj and H. Kisch: The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed. 47, 9975 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    J.H. Park, S. Kim, and A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    P. Sudhagar, K. Asokan, E. Ito, and Y.S. Kang: N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells. Nanoscale 4, 2416 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Z.B. Wu, F. Dong, W.R. Zhao, H.Q. Wang, Y. Liu, and B.H. Guan: The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20, 235701 (2009).

    Article  Google Scholar 

  18. 18.

    L.J. Fu, H. Liu, H.P. Zhang, C. Li, T. Zhang, Y.P. Wu, and H.Q. Wu: Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. J. Power Sources 159, 219 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, S.D. Yu, L. Wang, Z.P. Li, D.D. Liu, Y.Y. Hou, Y.G. Zou, B. Zou, T. Cui, and G.T. Zou: Synthesis and electrochemical properties of TiO2-B@C core-shell nanoribbons. Cryst. Growth Des. 8, 1812 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    J.W. Zhang, X.X. Yan, J.W. Zhang, W. Cai, Z.S. Wu, and Z.J. Zhang: Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries. J. Power Sources 198, 223 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    A. Kukovecz, A. Hodos, E. Horvath, G. Radnoczi, Z. Konya, and I. Kiricsi: Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B 109, 17781 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    A. Ilie, C. Durkan, W.I. Milne, and M.E. Welland: Surface enhanced Raman spectroscopy as a probe for local modification of carbon films. Phys. Rev. B 66, 045412 (2002).

    Article  Google Scholar 

  23. 23.

    X.C. Jiang, Y.L. Wang, T. Herricks, and Y.N. Xia: Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14, 695 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    L. Ren, X.T. Huang, F.L. Sun, and X. He: Preparation and characterization of doped TiO2 nanodandelion. Mater. Lett. 61, 427 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    M.D. Wei, H.S. Zhou, Y. Konishi, M. Ichihara, H. Sugiha, and H. Arakawa: Synthesis of tubular titanate via a self-assembly and self-removal process. Inorg. Chem. 45, 5684 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    R. Yoshida, Y. Susuki, and S. Yoshikawa: Synthesis of TiO2(B) nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    S. Pavasupree, Y. Suzuki, S. Yoshikawa, and R. Kawahata: Synthesis of titanate, TiO2(B), and anatase TiO2 nanofibers from natural rutile sand. J. Solid State Chem. 178, 3110 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    S. Shanmugam, A. Gabashvili, D.S. Jacob, J.C. Yu, and A. Gedanken: Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities. Chem. Mater. 18, 2275 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    L. Lin, W. Lin, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Y. He, and Y.F. Zhu: Uniform carbon-covered titania and its photocatalytic property. J. Mol. Catal. A: Chem. 236, 46 (2005).

    CAS  Article  Google Scholar 

Download references


This work was supported financially by the National Basic Research Program of China (2011CB808200) and the NSFC (10979001, 51025206, 51032001, 21073071, 11004075, 11004072, 11004138).

Author information



Corresponding author

Correspondence to Bingbing Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Q., Liu, R., Liu, B. et al. Synthesis of TiO2@C core–shell nanostructures with various crystal structures by hydrothermal and postheat treatments. Journal of Materials Research 28, 449–453 (2013).

Download citation