Effect of particle size and sintering temperature on densification during coupled multifield-activated microforming


In this paper, a novel sintering method is introduced for the forming of microcomponents in which the loose powders were loaded directly into the die, sintered with an external electric field, a thermal field, and an external stress field (called coupled multifields activation), where the fields were generated by a Gleeble thermal simulation instrument. Two kinds of 316L stainless steel powders of different particle sizes (20 and 70 μm) with no binder were sintered with microforming using a multifield coupling method. For particle size of 20 μm, a nearly fully densified microsintered compact (relative density is 99.2%) was manufactured at a relatively low sintering temperature (900 °C) and within a relatively short sintering time (4 min). The fluctuated temperature–time curve reveals that the rapid mass transfer of liquid phase is the dominant densification mechanism in the compacts with a starting particle size of 20 μm.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    L. Alting, F. Kimura, H.N. Hansen, and G. Bissacco: Micro engineering. CIRP Ann. Manuf. Technol. 52, 635 (2003).

    Article  Google Scholar 

  2. 2.

    Y. Qin: Micro-Manufacturing Engineering and Technology (Elsevier Inc., Oxford, UK, 2010); p. 3.

    Google Scholar 

  3. 3.

    Y. Qin, A. Brockett, Y. Ma, A. Razali, J. Zhao, C. Harrison, W. Pan, X. Dai, and D. Loziak: Micro-manufacturing: Research, technology outcomes and development issues. Int. J. Adv. Manuf. Technol. 47, 821 (2010).

    Article  Google Scholar 

  4. 4.

    M. Imbaby and K. Jiang: Micro fabrication of stainless steel micro components using soft moulding and aqueous slurry. Microelectron. Eng. 87, 72 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    S. Beeby, G. Enell, M. Kraft, and N. White: MEMS Mechanical Sensors (Artech House Inc., Boston, MA, 2004); p. 2.

    Google Scholar 

  6. 6.

    T. Mappes, M. Worgull, M. Heckele, and J. Mohr: Submicron polymer structures with x-ray lithography and hot embossing. Microsyst. Technol. 14, 1721 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    L.H. Liu, G. Liu, Y. Xiong, J. Chen, C.L. Kang, X.L. Huang, and Y.C. Tian: Fabrication of Fresnel zone plates with high aspect ratio by soft x-ray lithography. Microsyst. Technol. 14, 1251 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    D.Y. Sheu: High-speed micro electrode tool fabrication by a twin-wire EDM system. J. Micromech. Microeng. 18, 105014 (2008).

    Article  Google Scholar 

  9. 9.

    Y.M. Foong, A.T.T. Koh, S.R. Lim, D.H.C. Chua, and H.Y. Ng. Properties of laser fabricated nanostructured Cu/diamond-like carbon composite. J. Mater. Res. 26, 2761 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    S. Lee, Y.P. Chen, and C.H. Huang: Electroforming of metallic bipolar plates with micro-featured flow field. J. Power Sources 145, 369 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    C.H. Lee and K. Jiang: Fabrication of thick electroforming micro mold using a KMPR negative tone photoresist. J. Micromech. Microeng. 18, 055032 (2008).

    Article  Google Scholar 

  12. 12.

    T. Gietzelt, O. Jacobi, V. Piotter, R. Ruprecht, and J. Hausselt: Development of a micro annular gear pump by micro powder injection molding. J. Mater. Sci. 39, 2113 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    N.H. Loh, S.B. Tor, B.Y. Tay, Y. Murakoshi, and R. Maeda: Fabrication of micro gear by micro powder injection molding. Microsyst. Technol. 14, 43 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    S. Krug and J.R.G. Evans: Packing and solidification in ceramic injection molding. J. Mater. Res. 16, 1829 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    J.S. Kim, K. Jiang, and I. Chang: Pressure free fabrication of 3D microcomponents using Al powder. Adv. Eng. Mater. 8, 38 (2006).

    Article  Google Scholar 

  16. 16.

    M. Imbaby, K. Jiang, and I. Chang: Fabrication of 316-L stainless steel micro parts by soft lithography and powder metallurgy. Mater. Lett. 62, 4213 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    R. Butler, N. Ferrell, D. Hansford, and R. Naik: Soft lithography-mediated microscale patterning of silica on diverse substrates. J. Mater. Res. 24, 1632 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    C.R. Martin and I.A. Aksay: Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning. J. Mater. Res. 20, 1995 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    K.Q. Feng, M. Hong, Y. Yang, and W.J. Wang: Combustion synthesis of VC/Fe composites under the action of an electric field. Int. J. Refract. Met. Hard. Mater. 27, 852 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    S.W. Wang, L.D. Chen, and T. Hirai: Densification of Al2O3 powder using spark plasma sintering. J. Mater. Res. 15, 982 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    J.R. Groza, M. Garcia, and J.A. Schneider: Surface effects in field-assisted sintering. J. Mater. Res. 16, 286 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    M. Demuynck, J.P. Erauw, Van der O. Biest, F. Delannay, and F. Cambier: Densification of alumina by SPS and HP: A comparative study. J. Eur. Ceram. Soc. 32, 1957 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    K.Q. Feng, Y. Yang, M. Hong, J.L. Wu, and S.S. Lan: Intensified sintering of iron powders under the action of an electric field: Effect of technologic parameter on sintering densification. J. Mater. Process. Technol. 208, 264 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    M. Zadra, F. Casari, L. Girardini, and A. Molinari: Spark plasma sintering of pure aluminium powder: Mechanical properties and fracture analysis. Powder. Metall. 50, 40 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    H. Jabbar, A. Couret, L. Durand, and J.P. Monchoux: Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering. J. Alloys Compd. 509, 9826 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Z.A. Munir: The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion. Mater. Sci. Eng, A 287, 125 (2000).

    Article  Google Scholar 

  27. 27.

    D.V. Quach, H.A. Paredes, S. Kim, M. Martin, and Z.A. Munir: Pressure effects and grain growth kinetics in the consolidation of nanostructured fully stabilized zirconia by pulsed electric current sintering. Acta Mater. 58, 5022 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Z.D. Guan: Physical Properties of Inorganic Materials (Tsinghua University Press, Beijing, China, 1992); p. 25.

    Google Scholar 

  29. 29.

    W.T. Zhu: Physical Chemistry (Tsinghua University Press, Beijing, China, 1995); p. 128.

    Google Scholar 

  30. 30.

    A. Mondal, A. Upadhyaya, and D. Agrawal: Effect of heating mode and sintering temperature on the consolidation of 90W-7Ni-3Fe alloys. J. Alloys Compd. 509, 301 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    K.E. Stitzer, M.D. Smith, and Zur H.C. Loye: Crystal growth, structure determination and magnetic properties of Ba4Ir3O10 and Ba4(Co0.4Ir0.6)Ir2O10. J. Alloys Compd. 338, 104 (2002).

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the support from the National Nature Science Foundation of China (No. 50945018) for the conduction of the research reported in this paper.

Author information



Corresponding author

Correspondence to Yi Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, D., Yang, Y., Qin, Y. et al. Effect of particle size and sintering temperature on densification during coupled multifield-activated microforming. Journal of Materials Research 27, 2579–2586 (2012). https://doi.org/10.1557/jmr.2012.262

Download citation