Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles

Abstract

Dispersions of reduced tungsten oxide and tungsten bronze nanoparticles are known to show a remarkable absorption of near-infrared (NIR) light applicable to solar control filters for automotive and architectural windows. Origin of the NIR absorption has been investigated by analyzing dielectric constants of CsxWO3 (x = 0.15, 0.25, and 0.33) and WO2.72, and using Mie scattering theory. The optical analysis and Mie scattering theory analysis indicate that a localized surface plasmon resonance and polarons of localized electrons contribute alongside to the observed NIR absorption at different wavelengths.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

References

  1. 1.

    U. Kreibig and M. Vollmer: Optical properties of metal clusters; Springer Series, in Materials Science Vol. 25, edited by J.P. Toennies, (Springer-Verlag, New York, 1995). p. 25.

    Google Scholar 

  2. 2.

    M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi: Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131, 17736 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    W.K. Fisher: Polyvinylbutyral blends with lanthanum hexaboride for use in laminated solar control glazing, in Proceedings of the Glass Processing Days, Tampere, June 17–20, 2005, p. 110.

    Google Scholar 

  4. 4.

    H. Takeda and K. Adachi: Near infrared absorption of tungsten oxide nanoparticle dispersions. J. Am. Ceram. Soc. 90, 4059 (2007).

    CAS  Google Scholar 

  5. 5.

    H. Takeda, H. Kuno, and K. Adachi: Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J. Am. Ceram. Soc. 91, 2897 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    K. Adachi, M. Miratsu, and T. Asahi: Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res. 25, 510 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, and K. Adachi: High energy-resolution electron energy-loss spectroscopy of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 1381 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    U. zum Felde, M. Haase, and H. Weller: Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104, 9388 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    O.F. Shirmer, V. Wittwer, G. Baur, and G. Brandt: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. 124, 749 (1977).

    Article  Google Scholar 

  10. 10.

    E. Salje and B. Guttler: Anderson transition and intermediate polaron formation in WO3-X transport properties and optical absorption. Philos. Mag. B 50, 607 (1984).

    CAS  Article  Google Scholar 

  11. 11.

    G.A. Niklasson, J. Klasson, and E. Olsson: Polaron absorption in tungsten oxide nanoparticle aggregates. Electrochim. Acta 46, 1967 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    K. Bange: Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cells 58, 1 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    C.G. Granqvist: Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    A. Deneuville and P. Gerard: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).

    CAS  Article  Google Scholar 

  15. 15.

    M. Green and A. Travlos: Sodium-tungsten bronze thin films I. Optical properties of dilute bronzes. Philos. Mag. B 51, 501 (1985).

    CAS  Article  Google Scholar 

  16. 16.

    M. Miyakawa, H. Hosono, and H. Kawazoe: Formation of hydrogen tungsten bronze by proton implantation. Mater. Res. Bull. 34, 115 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    A. Hussain: Phase analysis of potassium, rubidium and cesium tungsten bronzes. Acta Chem. Scand. A32, 479 (1978).

    CAS  Article  Google Scholar 

  18. 18.

    I.A. Antonaia, M.C. Santoro, G. Fameli, and T. Polichetti: Transport mechanism and IR structural characterization of evaporated amorphous WO3 films. Thin Solid Films 426, 281 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    K. Viswanathan, K. Brandt, and E. Salje: Crystal structure and charge concentration of W18O49. J. Solid State Chem. 36, 45 (1981).

    CAS  Article  Google Scholar 

  20. 20.

    C.F. Boren and D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the cooperation of Takeshi Chonan in preparing the HIP specimens. They also thank Profs. Masami Terauchi and Yohei Sato of Tohoku University for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenji Adachi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adachi, K., Asahi, T. Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles. Journal of Materials Research 27, 965–970 (2012). https://doi.org/10.1557/jmr.2012.25

Download citation

Keywords

  • Nanoscale
  • Optical properties