Formation process of calcium vanadate nanorods and their electrochemical sensing properties


Calcium vanadate nanorods with Ca10V6O25 phase have been synthesized by a hydrothermal process without any surfactants. Hydrothermal temperature, reaction time and calcium (Ca) raw materials play important roles in the formation and size of the calcium vanadate nanorods. The nucleation and crystal growth combined with crystal splitting process have been proposed to explain the formation and growth of calcium vanadate nanorods. The calcium vanadate nanorods are used as glassy carbon electrode-modified materials to analyze the electrochemical behaviors of tartaric acid. The calcium vanadate nanorod-modified glassy carbon electrode exhibits good performance for the electrochemical detection of tartaric acid with a detection limit of 2.4 μM and linear range of 0.005–2 mM. The analytical performance and straightforward fabrication method make the calcium vanadate nanorods promising for the development of electrochemical sensors for tartaric acid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Table I


  1. 1.

    A.G.S Filho, O.P. Ferreira, E.J.G Santos, J.M. Fiho, and O.L. Alves: Raman spectra in vanadate nanotubes revisited. Nano Lett. 4, 2099 (2004).

    Article  Google Scholar 

  2. 2.

    Y. Liu, and Y.T. Qian: Controlled synthesis of β-Mn2V2O7 microtubes and hollow microspheres. Front. Chem. Chin. 3, 467 (2008).

    Article  Google Scholar 

  3. 3.

    R.D. Holtz, A.G.S Filho, M. Brocchi, D. Martins, N. Durán, and O.L. Alves: Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21, 185102 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    J.Q. Yu and A. Kudo: Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett. 34, 850 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    S. Singh, N. Kumari, K.B.R Varma, and S.B. Krupanidhi: Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes. J. Nanosci. Nanotechnol. 9, 6549 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    D.P. Singh, K. Polychronopoulou, C. Rebholz, and S.M. Aouadi: Room temperature synthesis and high-temperature frictional study of silver vanadate nanorods. Nanotechnology 21, 325601 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan, and M. Yoshimura: Novel chemical method for the synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta 49, 349 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    Q. Zhou, M.W. Shao, R.H. Que, L. Cheng, S.J. Zhuo, Y.H. Tong, and S.T. Lee: Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl. Phys. Lett. 98, 139110 (2011).

    Google Scholar 

  9. 9.

    S. Jouanneau, A. Verbaere, and D. Guyomard: On a new calcium vanadate: Synthesis, structure and Li insertion behavior. J. Solid State Chem. 172, 116 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    N. Tashtoush, A.M. Qudah, and M.M. El-Desoky: Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors. J. Phys. Chem. Solids 68, 1926 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe: Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Opt. Mater. 32, 1618 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    L.Z. Pei, Y.Q. Pei, Y.K. Xie, C.Z. Yuan, D.K. Li, and Q.F. Zhang: Growth of calcium vanadate nanorods. CrystEngComm 14, 4262 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    E. Baudrin, S. Laruelle, S. Denis, M. Touboul, and J.M. Tarascon: Synthesis and electrochemical properties of cobalt vanadates versus lithium. Solid State Ionics 123, 139 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    S.S. Kim, H. Ikuta, and M. Wakihara: Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics 139, 57 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    D. Hara, H. Ikuta, Y. Uchimoto, and M. Wakihara: Electrochemical properties of manganese vanadium molybdenum oxide as the anode for Li secondary batteries. J. Mater. Chem. 12, 2507 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    M. Inagaki, T. Morishita, M. Hirano, V. Gupta, and T. Nakajima: Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance. Solid State Ionics 156, 275 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, and K. Yamamoto: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519, 155 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    P.K. Sudeep, S.T.S Joseph, and K.G. Thomas: Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    M. Wei, Y. Liu, Z.Z. Gu, and Z.D. Liu: Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO2 nanorod composite. J. Chin. Chem. Soc. 58, 516 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    R.K. Kvaratskhelia, and E.R. Kvaratskhelia: Electrochemical behavior of tartaric acid at solid electrodes in aqueous and mixed solutions. Russ. J. Electrochem. 44, 230 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    A. Galkwad, M. Silva, and D.P. Bendito: Sensitive determination of periodate and tartaric acid by stopped-flow chemiluminescence spectrometry. Analyst 119, 1819 (1994).

    Article  Google Scholar 

  22. 22.

    Q.T. Khue, X.H. Vu, D.V. Dang, and D.C. Nguyen: The influence of hydrothermal temperature on SnO2 nanorod formation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 025210 (2010).

    Google Scholar 

  23. 23.

    T. Ma, M. Guo, M. Zhang, Y.J. Zhang, and X.D. Wang: Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 18, 035605 (2007).

    Article  Google Scholar 

  24. 24.

    A. Katsman, Y. Yaish, E. Rabkin, and M. Beregovsky: Surface diffusion-controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 29, 365 (2010).

    Article  Google Scholar 

  25. 25.

    V.G. Dubrovskii, N.V. Sibirev, R.A. Suris, G.E. Cirlin, J.C. Harmand, and V.M. Ustinov: Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    J. Tang and A.P. Alivisatos: Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Y.P. Dong, L.Z. Pei, X.F. Chu, and Q.F. Zhang: Electrochemical behavior of cysteine at a CuGeO3 nanowires-modified glassy carbon electrode. Electrochim. Acta 7, 5135 (2010).

    Article  Google Scholar 

  28. 28.

    H.J. Yan, D. Wang, M.J. Han, L.J. Wan, and C.L. Bai: Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. Langmuir 20, 7360 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Y.Z. Fu, R. Yuan, D.P. Tang, Y.Q. Chai, and L. Xu: Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf., B 40, 61 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Z.Y. Cai, L.Z. Pei, Y. Yang, Y.Q. Pei, C.G. Fan, and D.G. Fu: Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode. J. Solid State Electrochem. 16, 2243 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    J. Zhang, P.H. Deng, Y.L. Feng, Y.F. Kuang, and J.J. Yang: Electrochemical determination of ascorbic acid at γ-MnO2 modified carbon black microelectrodes. Microchim. Acta 147, 279 (2004).

    CAS  Google Scholar 

  32. 32.

    C. Xia and W. Ning: A novel bioelectrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. Analyst 136, 288 (2011).

    Article  Google Scholar 

  33. 33.

    Y. Li and S.H. Zhang: Electrochemical behaviors of ascorbic acid and uric acid in ionic liquid. J. Dispersion Sci. Technol. 29, 1421 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    C.G. Fu, L.N. Song, and Y.Z. Fang: Simultaneous determination of sugars and organic acids by coelectroosmotic capillary electrophoresis with amperometric detection at a disk-shaped copper electrode. Anal. Chim. Acta 371, 81 (1998).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Anhui Province (1208085QE98).

Author information



Corresponding author

Correspondence to Lizhai Pei.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pei, L., Pei, Y., Xie, Y. et al. Formation process of calcium vanadate nanorods and their electrochemical sensing properties. Journal of Materials Research 27, 2391–2400 (2012).

Download citation