Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition

Abstract

Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
SCHEME 1.

References

  1. 1.

    G. Pfaff and P. Reynders: Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    A. Salvador, M.C. Pascual-Marti, J.R. Adell, A. Requeni, and J.G. March: Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal. 22, 301 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    R. Zallen and M.P. Moret: The optical absorption edge of brookite TiO2. Solid State Commun. 137, 154 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Braun, A. Baidins, and R.E. Marganski: Titanium dioxide pigment technology: A review. Prog. Org. Coat. 20, 105 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    S.A. Yuan, W.H. Chen, and S.S. Hu: Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Mater. Sci. Eng., C C25, 479 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Article  Google Scholar 

  7. 7.

    B. Oregan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    A.L. Linsebigler, G. Lu, and J.T. Yates Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, and V.L. Colvin: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Bessekhouad, D. Robert, and J.V. Weber: Synthesis of photocatalytic TiO2 nanoparticles: Optimization of the preparation conditions. J. Photochem. Photobiol., A 157, 47 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    K.D. Kim, S.H. Kim, and H.T. Kim: Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids Surf., A 254, 99 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    J. Yang, S. Mei, and J.M.F. Ferreira: Hydrothermal synthesis of TiO2 nanopowders from tetra alkylammonium hydroxide peptized sols. Mater. Sci. Eng., C C15, 183 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    C.S. Kim, B.K. Moon, J.H. Park, S.T. Chung, and S.M. Son: Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. J. Cryst. Growth 254, 405 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    J.M. Wu: Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J. Cryst. Growth 269, 347(2004).

    CAS  Article  Google Scholar 

  17. 17.

    S. Seifried, M. Winterer, and H. Hahn: Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vap. Deposition 6, 239 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    B. Xiang, Y. Zhang, Z. Wang, X.H. Luo, Y.W. Zhu, H.Z. Zhang, and D.P. Yu: Field-emission properties of TiO2 nanowire arrays. J. Phys. D: Appl. Phys. 38, 1152 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Lei, L.D. Zhang, and J.C. Fan: Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    W. Huang, X. Tang, Y. Wang, Y. Koltypin, and A. Gedanken: Selective synthesis of anatase and rutile via ultrasound irradiation. Chem. Commun. 15, 1415 (2000).

    Article  Google Scholar 

  21. 21.

    T. Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, and S. Yanagida: Microwave-driven polyol method for preparation of TiO2 nanocrystallites. Chem. Lett. 10, 964 (2002).

    Article  Google Scholar 

  22. 22.

    G. Oskam, A. Nellore, R.L. Penn, and P.C. Searson: The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J. Phys. Chem. B 107, 1734 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    R. Jenkins and R.L. Snyder: Introduction to X-rap Powder Diffractometry (John Wiley & Sons Inc., New York, 1996).

    Google Scholar 

  24. 24.

    J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li: UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 110, 927 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    X. Chen and C. Burda: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    X. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    T.L. Thompson and J.T. Yates Jr.: TiO2-based photocatalysis: Surface defects, oxygen and charge transfer. Top. Catal. 35, 197 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Y.R. Park and K.J. Kim: Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping. Thin Solid Films 484, 34 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li: Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 47, 1766 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

X.C. thanks the support from College of Arts and Sciences, University of Missouri—Kansas City and University of Missouri Research Board.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xia, T., Otto, J.W., Dutta, T. et al. Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition. Journal of Materials Research 28, 326–332 (2013). https://doi.org/10.1557/jmr.2012.239

Download citation