Monodisperse Au/aminosilica composite nanospheres: Facile one-step synthesis and their applications in gene transfection

Abstract

In this study, Au/aminosilica composite nanospheres have been synthesized via a simple one-pot route using HAuCl4 and N-(3-trimethoxysilylpropyl)-ethylenediamine as starting materials. Scanning electron microscopy results show that these spheres are with diameters of about 300 nm. The obtained Au/aminosilica nanospheres were used as nonviral carriers for gene delivery. Compared with commercial Lipofectamine 2000, the Au/aminosilica nanospheres are with higher transfection efficiency and lower cytotoxicity. Furthermore, the nanospheres are biocompatible, which may find applications in gene delivery and drug carrier.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    N.L. Rosi and C.A. Mirkin: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Lu, C. Shi, M.J. Hu, Y.J. Xu, L. Yu, L.P. Wen, Y. Zhao, W.P. Xu, and S.H. Yu: Magnetic alloy nanorings loaded with gold nanoparticles: Synthesis and applications as multimodal imaging contrast agents. Adv. Funct. Mater. 20, 3701 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    A. Corma and P. Serna: Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    I. Tanahashi and A. Mito: Femtosecond optical nonlinearities of Au/TiO2 thin films prepared by a sputtering method. J. Mater. Res. 26, 763 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Z. Siwy, L. Trofin, P. Kohli, L.A. Baker, C. Trautmann, and C.R. Martin: Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    T. Hassenkam, K. Moth-Poulsen, N. Stuhr-Hansen, K. Nørgaard, M.S. Kabir, and T. Bjørnholm: Self-assembly and conductive properties of molecularly linked gold nanowires. Nano Lett. 4, 19 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    R. Guo, R.T. Li, X.L. Li, L.Y. Zhang, X.Q. Jiang, and B.R. Liu: Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small 5, 709 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    P.S. Ghosh, C.K. Kim, G. Han, N.S. Forbes, and V.M. Rotello: Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2, 2213 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    P. Ghosh, G. Han, M. De, C.K. Kim, and V.M. Rotello: Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev. 60, 1307 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, and C.A. Mirkin: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    A. Elbakry, A. Zaky, R. Liebl, R. Rachel, A. Goepferich, and M. Breunig: Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9, 2059 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    L.Y.T Chou, K. Ming, and W.C.W Chan: Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    S.T. Guo, Y.Y. Huang, Q. Jiang, Y. Sun, L.D. Deng, Z.C. Liang, Q. Du, J.F. Xing, Y.L. Zhao, P.C. Wang, A.J. Dong, and X.J. Liang: Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    W.K. Phim, J.S. Kim, and J.M. Nam: Lipid-gold-nanoparticle hybrid-based gene delivery. Small 4, 1651 (2008).

    Article  CAS  Google Scholar 

  15. 15.

    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, and M.D. Wyatt: gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    E.C. Cho, J.W. Xie, P.A. Wurm, and Y.N. Xia: Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    W.G. Qu, S.M. Wang, Z.J. Hu, T.Y. Cheang, Z.H. Xing, X.J. Zhang, and A.W. Xu: In situ synthesis of gold@3,4-dihydroxy-L-phenylalanine core-shell nanospheres used for cell imaging. J. Phys. Chem. C 114, 13010 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    P. Botella, A. Corma, and M.T. Navarro: Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 19, 1979 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Lu, Y.D. Yin, Z.Y. Li, and Y.N. Xia: Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett. 2, 785 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    S.H. Liu, Y. Wong, Y.B. Wang, D.S. Wang, and M.Y. Han: Controlled release and absorption resonance of fluorescent silica-coated platinum nanoparticles. Adv. Funct. Mater. 17, 3147 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    P. Zhang and Y.Y. Guo: Surface-enhanced Raman scattering inside metal nanoshells. J. Am. Chem. Soc. 131, 3808 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.J. Hu, Y.J. Xu, L.P. Wen, and S.H. Yu: Hydrophilic Co@Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    M. Roca and A.J. Haes: Silica-void-gold nanoparticles: Temporally stable surface-enhanced Raman scattering substrates. J. Am. Chem. Soc. 130, 14273 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    X.J. Wu and D.S. Xu: Formation of Yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 131, 2774 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    T. Ung, L.M. Liz-Marzán, and P. Mulvaney: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    J. Xu and C.C. Perry: A novel approach to Au@SiO2 core-shell spheres. J. Non-Cryst. Solids 353, 1212 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    L.F. Gutierrez, S. Hamoudi, and K. Belkacemi: Synthesis of gold catalysts supported on mesoporous silica materials: Recent developments. Catalysts 1, 97 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    M.H. Kim, H.K. Na, Y.K. Kim, S.R. Ryoo, H.S. Cho, K.E. Lee, H. Jeon, R. Ryoo, and D.H. Min: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5, 3568 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, and P.N. Prasad: Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. U.S.A. 102, 279 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    X.X. He, K.M. Wang, W.H. Tan, B. Liu, X. Lin, C.M. He, D. Li, S.S. Huang, and J. Li: Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 125, 7168 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    C. Kneuer, M. Sameti, U. Bakowsky, T. Schiestel, H. Schirra, H. Schmidt, and C.M. Lehr: A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem. 11, 926 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    X.P. Sun, S.J. Dong, and E.K. Wang: One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37, 7105 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    B.L.V Prasad, S.I. Stoeva, C.M. Sorensen, V. Zaikovski, and K.J. Klabunde: Gold nanoparticles as catalysts for polymerization of alkylsilanes to siloxane nanowires, filaments, and tubes. J. Am. Chem. Soc. 125, 10488 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    N.R. Jana, L. Gearheart, and C.J. Murphy: Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17, 6782 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    M. Thomas and A.M. Klibanov: Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 100, 9138 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    J.M. Saul, C.H.K Wang, C.P. Ng, and S.H. Pun: Multilayer nanocomplexes of polymer and DNA exhibit enhanced gene delivery. Adv. Mater. 20, 19 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    J. Sunshine, J.J. Green, K.P. Mahon, F. Yang, A.A. Eltoukhy, D.N. Nguyen, R. Langer, and D.G. Anderson: Small-molecule end-groups of linear polymer determine cell-type gene-delivery efficacy. Adv. Mater. 21, 4947 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    C. Kneuer, M. Sameti, E.G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, and C.M. Lehr: Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 196, 257 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    C.P. Tsai, C.Y. Chen, Y. Hung, F.H. Chang, and C.Y. Mou: Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 19, 5737 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J.I. Zink, and A.E. Nel: Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 3273 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    K.M.L Taylor, J.S. Kim, W.J. Rieter, H. An, W.L. Lin, and W.B. Lin: Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 130, 2154 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, and T. Hyeon: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47, 8438 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    X. Gao and L. Huang: Cationic liposome-mediated gene transfer. Gene Ther. 2, 710 (1995).

    CAS  Google Scholar 

  45. 45.

    C.M. Varga, K. Hong, and D.A. Lauffenburger: Quantitative analysis of synthetic gene delivery vector design properties. Mol. Ther. 4, 438 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    V.P. Torchilin: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 4, 145 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    K. Matsui, S. Sando, T. Sera, Y. Aoyama, Y. Sasaki, T. Komatsu, T. Terashima, and J. Kikuchi: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. J. Am. Chem. Soc. 128, 3114 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB933700), the 100 Talents program of the Chinese Academy of Sciences, and the National Natural Science Foundation of China (20971118).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anwu Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Cheang, T., Wang, S. et al. Monodisperse Au/aminosilica composite nanospheres: Facile one-step synthesis and their applications in gene transfection. Journal of Materials Research 27, 2425–2430 (2012). https://doi.org/10.1557/jmr.2012.218

Download citation