Characterization of hydrogen-induced structural changes in Zr-based bulk metallic glasses using positron annihilation spectroscopy

Abstract

The effects of hydrogen on the structure of Zr-based bulk metallic glasses were investigated by positron annihilation lifetime spectroscopy. Three lifetime components are identified, indicating the presence of three distinct size ranges for open volume defects in the glass. The concentration of the smallest sites identified as tetrahedral interstitial holes in the densely packed and the intermediate sites identified as flow defects, changes with hydrogen addition. The concentration of tetrahedral interstitial holes in Zr55Cu30Ni5Al10 alloys initially increases with the increase of hydrogen content. When Zr55Cu30Ni5Al10 alloys were prepared in Ar + 10%H2 atmospheres, the concentration of tetrahedral interstitial holes reaches a maximum, which may provide a more dense random-packed structure. For Zr57Al10Cu15.4Ni12.6Nb5alloys, the increase of hydrogen content causes a decrease in the concentration of tetrahedral interstitial holes and an increase in the concentration of flow defects.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3

References

  1. 1.

    W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    Y.J. Sun, D.D. Qu, Y.J. Huang, K.D. Liss, X.S. Wei, D.W. Xing, and J. Shen: Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability. Acta Mater. 57, 1290 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, and J.Z. Jiang: Zr-(Cu, Ag)-Al bulk metallic glasses. Acta Mater. 56, 1785 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean: Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation. Acta Mater. 55, 3403 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    M.H. Cohen and D. Turnbull: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959).

    CAS  Article  Google Scholar 

  8. 8.

    M. Hasegawa, M. Takeuchi, H. Kato, and A. Inoue: Effects of a small amount of Si or Ge addition on stability and hydrogen-induced internal friction of Ti34Zr11Cu47Ni8 glassy alloys. Acta Mater. 52, 1799 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    M. Hasegawa, M. Takeuchi, H. Kato, Y. Yamaura, and A. Inoue: Hydrogen-induced internal friction of Ti-rich multicomponent glassy alloys. Mater. Sci. Eng., A 442, 106 (2006).

    Article  Google Scholar 

  10. 10.

    Y.Q. Su, L. Wang, L.S. Luo, X.H. Jiang, J.J. Guo, and H.Z. Fu: Deoxidation of titanium alloy using hydrogen. Int. J. Hydrogen Energy 34, 8958 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Y.Q. Su, L. Wang, L.S. Luo, X.W. Liu, J.J. Guo, and H.Z. Fu: Investigation of melt hydrogenation on the microstructure and deformation behavior of Ti-6Al-4V alloy. Int. J. Hydrogen Energy 36, 1027 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Y.Q. Su, X.W. Liu, L.S. Luo, L. Zhao, J.J. Guo, and H.Z. Fu: Hydrogen solubility in molten TiAl alloys. Int. J. Hydrogen Energy 35, 8008 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    X.W. Liu, Y.Q. Su, L.S. Luo, F.Y. Dong, J.J. Guo, and H.Z. Fu: Effect of hydrogen treatment on solidification structures and mechanical properties of TiAl alloys. Int. J. Hydrogen Energy 36, 3260 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    K.M. Flores, D. Suh, R.H. Dauskardt, Asoka-P. Kumar, P.A. Sterne, and R.H. Howell: Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. J. Mater. Res. 17, 1153 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Asoka-P. Kumar, J. Hartley, R. Howell, and P.A. Sterne: Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6. Appl. Phys. Lett. 77, 1973 (2000).

    Article  Google Scholar 

  16. 16.

    C. Nagel, K. Rätzke, E. Schmidtke, F. Faupel, and W. Ulfert: Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition. Phys. Rev. B 60, 9212 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    D. Suh, P. Asoka-Kumar, P.A. Sterne, R. Howell, and R.H. Dauskardt: Temperature dependence of positron annihilation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. J. Mater. Res. 18, 2021 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    J.D. Bernal: A geometrical approach to the structure of liquids. Nature 183, 141 (1959).

    CAS  Article  Google Scholar 

  19. 19.

    J.D. Bernal: Geometry of the structure of monatomic liquids. Nature 185, 68 (1960).

    Article  Google Scholar 

  20. 20.

    J. Sietsma and B.J. Thijsse: Characterization of free volume in atomic models of metallic glasses. Phys. Rev. B 52, 3248 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Campillo, F. Plazaola, and M.J. Puska: Positron lifetime calculations of hexagonal metals with the true geometry. Phys. Status Solidi A 206, 509 (1998).

    CAS  Article  Google Scholar 

  22. 22.

    F. Spaepen: A Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    CAS  Article  Google Scholar 

  23. 23.

    A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    CAS  Article  Google Scholar 

  24. 24.

    Y.J. Huang, J. Shen, and J.F. Sun: Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 (2007).

    Article  Google Scholar 

  25. 25.

    J. Tan, Y. Zhang, B.A. Sun, M. Stoica, C.J. Li, K.K. Song, KüU. hn, F.S. Pan, and J. Eckert: Correlation between internal states and plasticity in bulk metallic glass. Appl. Phys. Lett. 98, 151906 (2011).

    Article  Google Scholar 

  26. 26.

    A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    B.P. Kanungo, S.C. Gladeb, P. Asoka-Kumar, and K.M. Flores: Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics 12, 1073 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (50975060, 50901025), National Basic Research Program of China (2011CB610406), China Postdoctoral Science Foundation (201104420, 20090450840), Fundamental research funds for the central universities (HΓT.BREΠ.2010008), and Scientificand technological project in Heilongjiang Province (GZ09A206) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fuyu Dong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, F., Su, Y., Luo, L. et al. Characterization of hydrogen-induced structural changes in Zr-based bulk metallic glasses using positron annihilation spectroscopy. Journal of Materials Research 27, 2587–2592 (2012). https://doi.org/10.1557/jmr.2012.209

Download citation