The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure


Using the thermal oxidation of iron, we show that the growth morphologies of one-dimensional nanostructures of hematite (α-Fe2O3) can be tuned by varying the oxygen gas pressure. It is found that the oxidation at the oxygen gas pressures of ∼0.1 Torr is dominated by the growth of hematite nanobelts, whereas oxidation at pressure near 200 Torr is dominated by the growth of hematite nanowires. Detailed transmission electron microscopy study shows that both the nanobelts and nanowires grow along the direction with a bicrystal structure. It is shown that nanowires are rooted on Fe2O3 grains, whereas nanobelts are originated from the boundaries of Fe2O3 grains. Our results show that oxygen gas pressure can be used to manipulate the Fe2O3/Fe3O4 interfacial reaction, thereby tailoring the oxide growth morphologies via the stress-driven diffusion.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    K.A. Dick: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    J. Lu, P. Chang, and Z. Fan: Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 (2006).

    Article  CAS  Google Scholar 

  3. 3.

    E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri: Quasi-one-dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater Sci. 54, 1 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    E. Park, S. Shim, R. Ha, E. Oh, B.W. Lee, and H.J. Choi: Reassembling of Ni and Pt catalyst in the vapor-liquid-solid growth of GaN nanowires. Mater. Lett. 65, 2458 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    J. Paek, M. Yamaguchi, and H. Amano: MBE-VLS growth of catalyst-free III-V axial heterostructure nanowires on (111)Si substrates. J. Cryst. Growth 323, 315 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    R. Schwertberger, D. Gold, J.P. Reithmaier, and A. Forchel: Epitaxial growth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wave length laser applications. J. Cryst. Growth 251, 248 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    C. Gatel, H. Tang, C. Crestou, A. Ponchet, N. Bertru, F. Dore, and H. Folliot: Analysis by high-resolution electron microscopy of elastic strain in thick InAs layers embedded in Ga0.47In0.53As buffers on InP(001) substrate. Acta Mater. 58, 3238 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Z.H. Zhang, K. Sumitomo, F. Lin, H. Omi, and T. Ogino: Structure transition of Ge/Si(113) surfaces during Ge epitaxial growth. Physica E 24, 157 (2004).

    Article  CAS  Google Scholar 

  9. 9.

    N. Motta, A. Sgarlata, R. Calarco, Q. Nguyen, J.C. Cal, F. Patella, A. Balzarotti, and M. De Crescenzi: Growth of Ge-Si(111) epitaxial layers: Intermixing, strain relaxation and island formation. Surf. Sci. 406, 254 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    H.J. Fan, A.S. Barnard, and M. Zacharias: ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. Appl. Phys. Lett. 90, 143116 (2007).

    Article  CAS  Google Scholar 

  11. 11.

    A.S. Barnard: A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B 110, 24498 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    A.S. Barnard, Y. Xiao, and Z. Cai: Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419, 313 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    X.C. Jiang, T. Herricks, and Y.N. Xia: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    M.L. Zhong, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, and W.Q. Qiu: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    C.H. Xu, C.H. Woo, and S.Q. Shi: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    F. Rizzo, S.R.J. Saunders, and M. Monteiro: The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater Sci. 53, 775 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, and Z.L. Wang: Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 16, 2243 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima: Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores. Acta Mater. 57, 5046 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    R. Takagi: Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Jpn. 12, 1212 (1957).

    CAS  Article  Google Scholar 

  20. 20.

    X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, and S.H. Yang: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    D.A. Voss, E.P. Butler, and T.E. Michell: The growth of hematite blades during the high temperature oxidation of iron. Metall. Trans. A 13A, 929 (1982).

    Article  Google Scholar 

  22. 22.

    Q. Han, Y.Y. Xu, Y.Y. Fu, H. Zhang, R.M. Wang, T.M. Wang, and Z.Y. Chen: Defects and growing mechanisms of α-Fe2O3 nanowires. Chem. Phys. Lett. 431, 100 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Z. Dong, P. Kashkarov, and H. Zhang: Monte Carlo study for the growth of α-Fe2O3 nanowires synthesized by thermal oxidation of iron. Nanoscale 2, 524 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    C.T. Hsieh, J.M. Chen, H.H. Lin, and H.C. Shih: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechansim. Appl. Phys. Lett. 82, 3316 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu, and S.Z. Shi: Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260, 130 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    R.A. Rapp: The high temperature oxidation of metals forming cation-diffusing scales. Metall. Mater. Trans. B 15, 195 (1984).

    Article  Google Scholar 

  27. 27.

    G. Raynaud and R. Rapp: In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals. Oxid. Met. 21, 89 (1984).

    CAS  Article  Google Scholar 

  28. 28.

    P. Kofstad: High Temperature Corrosion (Elsevier Applied Science Publishers, Barking, UK, 1988, pp. 350–445).

    Google Scholar 

  29. 29.

    A.M. Goncalves, L.C. Campos, A.S. Ferlauto, and R.G. Lacerda: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).

    Article  CAS  Google Scholar 

  30. 30.

    A. Kumar, A.K. Srivastava, P. Tiwari, and R.V. Nandedkar: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys. Condens. Matter 16, 8531 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, and P.X. Yan: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    J. Chen, L. Xu, W. Li, and X. Gou: α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    C. Wu, P. Yin, C. OuYang, and Y. Xie: Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Y.Y. Xu, X.F. Rui, Y.Y. Fu, and H. Zhang: Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    L.-C. Hsu, Y.-Y. Li, C.-G. Lo, C.-W. Huang, and G. Chern: Thermal growth and magnetic characterization of α-Fe2O3 nanowires. J. Phys. D Appl. Phys. 41, 185003 (2008).

    Article  CAS  Google Scholar 

  36. 36.

    L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, and H. Hofmeister: Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    L.-C. Hsu, Y.-Y. Li, and C.-Y. Hsiao: Synthesis, electrical measurement, and field emission properties of α-Fe2O3 nanowires. Nanoscale Res. Lett. 3, 330 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Y. Peng, H.L. Zhang, S.L. Pan, and H.L. Li: Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film. J. Appl. Phys. 87, 7405 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    H. Wang, X. Zhang, B. Liu, H. Zhao, Y. Li, Y. Huang, and Z. Du: Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem. Lett. 34, 184 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, and L.J. Wan: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    J. Jin, S. Ohkoshi, and K. Hashimoto: Giant coercive field of nanometer‐sized iron oxide. Adv. Mater. 16, 48 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    J.J. Wu, Y.L. Lee, H.H. Chiang, and D.K. Wong: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    U. Cvelbar, Z.Q. Chen, M.K. Sunkara, and M. Mozetic: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Y.Y. Fu, J. Chen, and J. Zhang: Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 350, 491 (2001).

    CAS  Article  Google Scholar 

  45. 45.

    Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A.V. Narlikar, and H. Zhang: Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett. 379, 373 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L.I. Nasibulina, J. Sainio, and E.I. Kauppinen: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Z.Q. Chen, U. Cvelbar, M. Mozetic, J.Q. He, and M.K. Sunkara: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).

    Article  CAS  Google Scholar 

  48. 48.

    R.M. Wang, Y.F. Chen, Y.Y. Fu, H. Zhang, and C. Kisielowski: Bicrystalline hematite nanowires. J. Phys. Chem. B 109, 12245 (2005).

    CAS  Article  Google Scholar 

  49. 49.

    N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 83–86).

    Google Scholar 

  50. 50.

    D. Young: High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, United Kingdom, 2008, pp. 85–91).

    Google Scholar 

  51. 51.

    L. Yuan, Y.Q. Wang, R. Mema, and G.W. Zhou: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    R. Mema, L. Yuan, Q. Du, Y.Q. Wang, and G.W. Zhou: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).

    CAS  Article  Google Scholar 

Download references


The research was supported by the National Science Foundation under the Grant No. CMMI-0825737.

Author information



Corresponding author

Correspondence to Guangwen Zhou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, L., Jiang, Q., Wang, J. et al. The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure. Journal of Materials Research 27, 1014–1021 (2012).

Download citation