Skip to main content

Advertisement

Log in

A study on H2 plasma treatment effect on a-IGZO thin film transistor

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the effect of H2 plasma treatment on amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistor (TFT). The changes in electrical characteristics and stability of the a-IGZO TFT treated by H2 plasma were evaluated under thermal stress. Each device exhibited a change in the subthreshold swing, turn on voltage shift, and hysteresis depending on the amount of hydrogen atom. It was found that there occurred a decrease of oxygen deficiency and an increase of hydrogen content in channel layer and channel/dielectric interface with increasing treatment time. The proper hydrogen dose well passivated the oxygen vacancies; however, more hydrogen dose acted as excessive donors. The change of oxygen vacancy and total trap charge were explained by the activation energy from Arrhenius plot. Through this study, we found that the optimized H2 plasma treatment brings device stability by affecting oxygen vacancy and trap content in channel bulk and channel/dielectric interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG 1
FIG 2
FIG 3
FIG 4
FIG 5
FIG 6
FIG 7

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).

    Article  CAS  Google Scholar 

  2. R. Hayashi, A. Sato, M. Ofuji, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono: Invited paper: Improved amorphous in-Ga-Zn-O TFTs. SID Int. Symp. Dig. Tech. 39, 621 (2008).

    Article  CAS  Google Scholar 

  3. E.V. Monakhov, J.S. Christensen, K. Maknys, B.G. Svensson, and A.Y. Kuznetsov: Hydrogen implantation into ZnO for n(+)-layer formation. Appl. Phys. Lett. 87, 191910 (2005).

    Article  Google Scholar 

  4. M. Kumar, R. Chatterjee, S. Milikisiyants, A. Kanjilal, M. Voelskow, D. Grambole, K.V. Lakshmi, and J.P. Singh: Investigating the role of hydrogen in indium oxide tubular nanostructures as a donor or oxygen vacancy passivation center. Appl. Phys. Lett. 95, 013102 (2009).

    Article  Google Scholar 

  5. S.W. Tsao, T.C. Chang, S.Y. Huang, M.C. Chen, S.C. Chen, C.T. Tsai, Y.J. Kuo, Y.C. Chen, and W.C. Wu: Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid State Electron. 54, 1497 (2010).

    Article  CAS  Google Scholar 

  6. J.H. Jeong, H.W. Yang, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, J. Song, and C.S. Hwang: Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors. Electrochem. Solid-State Lett. 11, H157 (2008).

    Article  CAS  Google Scholar 

  7. T. Kamiya, K. Nomura, and H. Hosono: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010).

    Article  Google Scholar 

  8. K. Hoshino, D. Hong, H.Q. Chiang, and J.F. Wager: Constant-voltage-bias stress testing of a-IGZO thin-film transistors. IEEE Trans. Electron Devices 56, 1365 (2009).

    Article  CAS  Google Scholar 

  9. P.G. Lecomber and W.E. Spear: Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509 (1970).

    Article  CAS  Google Scholar 

  10. Y.M. Kim, K.S. Jeong, H.J. Yun, S.D. Yang, S.Y. Lee, H.D. Lee, and G.W. Lee: Anomalous stress-induced hump effects in amorphous indium gallium zinc oxide TFTs. Trans. Electr. Electron. Mater. 13, 47 (2012).

    Article  Google Scholar 

  11. S.H.K Park, C.S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.I. Lee, K. Lee, M.S. Oh, and S. Im: Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Adv. Mater. 21, 678 (2009).

    Article  CAS  Google Scholar 

  12. C.F. Huang, C.Y. Peng, Y.J. Yang, H.C. Sun, H.C. Chang, P.S. Kuo, H.L. Chang, C.Z. Liu, and C.W. Liu: Stress-induced hump effects of p-channel polycrystalline silicon thin-film transistors. IEEE Electron Device Lett. 29, 1332 (2008).

    Article  CAS  Google Scholar 

  13. Y.J. Chung, J.H. Kim, U.K. Kim, M. Ryu, S.Y. Lee, and C.S. Hwang: Study on the existence of abnormal hysteresis in Hf-In-Zn-O thin film transistors under illumination. Electrochem. Solid-State Lett. 14, H300 (2011).

    Article  CAS  Google Scholar 

  14. G.H. Kim, H.S. Kim, H.S. Shin, B.D. Ahn, K.H. Kim, and H.J. Kim: Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517, 4007 (2009).

    Article  CAS  Google Scholar 

  15. J.R. Bellingham, A.P. Mackenzie, and W.A. Phillips: Precise measurements of oxygen-content - oxygen vacancies in transparent conducting indium oxide-films. Appl. Phys. Lett. 58, 2506 (1991).

    Article  CAS  Google Scholar 

  16. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono: Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O(2) annealing. Appl. Phys. Lett. 93, 192107 (2008).

    Article  Google Scholar 

  17. T. Kamiya, K. Nomura, and H. Hosono: Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. IEEE/OSA J. Disp. Technol. 5, 273 (2009).

    Article  CAS  Google Scholar 

  18. H. Seo, C.J. Park, Y.J. Cho, Y.B. Kim, and D.K. Choi: Correlation of band edge native defect state evolution to bulk mobility changes in ZnO thin films. Appl. Phys. Lett. 96, 232101 (2010).

    Article  Google Scholar 

  19. C.C. Lin, H.P. Chen, H.C. Liao, and S.Y. Chen: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).

    Article  Google Scholar 

  20. T. Kamiya, K. Nomura, and H. Hosono: Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO(4) studied by density functional theory. Phys. Status Solidi A 207, 1698 (2010).

    Article  CAS  Google Scholar 

  21. K.H. Ji, J.I. Kim, H.Y. Jung, S.Y. Park, Y.G. Mo, J.H. Jeong, J.Y. Kwon, M.K. Ryu, S.Y. Lee, R. Choi, and J.K. Jeong: The effect of density-of-state on the temperature and gate bias-induced instability of InGaZnO thin film transistors. J. Electrochem. Soc. 157, H983 (2010).

    Article  CAS  Google Scholar 

  22. J. Jeong, J.K. Jeong, J.S. Park, Y.G. Mo, and Y. Hong: Meyer-Neldel rule and extraction of density of states in amorphous indium-gallium-zinc-oxide thin-film transistor by considering surface band bending. Jpn. J. Appl. Phys. 49, 03CB02 (2010).

    Google Scholar 

  23. H.C. Slade, M.S. Shur, S.C. Deane, and M. Hack: Below threshold conduction in a-Si:H thin film transistors with and without a silicon nitride passivating layer. Appl. Phys. Lett. 69, 2560 (1996).

    Article  CAS  Google Scholar 

  24. L. Pichon, A. Mercha, R. Carin, O. Bonnaud, T. Mohammed-Brahim, Y. Helen, and R. Rogel: Analysis of the activation energy of the subthreshold current in laser- and solid-phase-crystallized polycrystalline silicon thin-film transistors. Appl. Phys. Lett. 77, 576 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2011-0015436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungtak Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Bang, S., Lee, S. et al. A study on H2 plasma treatment effect on a-IGZO thin film transistor. Journal of Materials Research 27, 2318–2325 (2012). https://doi.org/10.1557/jmr.2012.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.199

Navigation