Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer

Abstract

High-density cobalt (Co) nanowires (NWs) were fabricated using porous anodized aluminum oxide as a template. Measurement results show a high magnetic performance for NWs with a coercivity of about 1750 Oe and strong magnetic anisotropy with an easy axis parallel to the NW direction. We have investigated the effect of alternating current (AC) electrodeposition frequency on the magnetic properties of NW samples. We show that understanding the effect of barrier layer is critical for controlling the rate of NW electrodeposition. A circuit model is proposed that accurately describes the role of the barrier and interfacial layers during deposition. Results obtained by simulation of the circuit show an excellent agreement with experimental results for different frequencies and voltages. It is shown that the amount of electrodeposited material can be estimated based on the difference between the anodic and cathodic half cycles in the electrodeposited current. Use of higher frequency leads to more symmetrical half cycles and smaller electrodeposited material.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Table I
Table II
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, and H. Kronmuller: Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 79, 1360 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    S. Dubois, J.M. Beuken, L. Piraux, J.L. Duvail, A. Fert, J.M. George, and J.L. Maurice: Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 165, 30 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    A. Blondel, J.P. Meier, B. Doudin, and J.P. Ansermet: Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    O.K. Varghese, D. Gong, W.R. Dreschel, K.G. Ong, and C.A. Grimes: Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens. Actuators, B 94, 27 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    S. Chakraborty, K. Hara, and P.T. Lai: New microhumidity field-effect transistor sensor in ppm(v) level. Rev. Sci. Instrum. 70, 1565 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    H. Xu, D.H. Qin, Z. Yang, and H.L. Li: Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 80, 524 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    F. Matsumoto, K. Nishio, and H. Masuda: Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater. 16, 23 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    S. Ono, M. Saito, M. Ishiguro, and H. Asoh: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    S.Z. Chu, S. Inoue, K. Wada, S. Hishita, and K. Kurashima: Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    J.R. Lim, J.F. Whitacre, J.P. Fleurial, C.K. Huang, M.A. Ryan, and N.V. Myung: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17, 1488 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Peng, D.H. Qin, R.J. Zhou, and H.L. Li: Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mater. Sci. Eng., B 77, 246 (2000).

    Article  Google Scholar 

  12. 12.

    M.J. Zheng, L.D. Zhang, X.Y. Zhang, J. Zhang, and G.H. Li: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    J. Choi, Y. Luo, R.B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele: Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    C.R. Martin: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    S. Shingubara: Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    J.C. Hulteen and C.R. Martin: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    H. Yoon, D.C. Deshpande, V. Ramachandran, and V.K. Varadan: Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19, 025304 (2008).

    Article  Google Scholar 

  18. 18.

    C. Schonenberger, B.M.I vanderZande, L.G.J Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, and U. Staufer: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B 101, 5497 (1997).

    Article  Google Scholar 

  19. 19.

    H. Masuda, F. Hasegwa, and S. Ono: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura: Photonic crystal using anodic porous alumina. Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).

    Article  Google Scholar 

  21. 21.

    H. Masuda and K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    CAS  Article  Google Scholar 

  22. 22.

    S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, and M.J. Natan: Submicrometer metallic barcodes. Science 294, 137 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, and M.H.W Chan: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    F. Hebard, S.A. Ajuria, and R.H. Eick: Interface contribution to the capacitance of thin-film Al-Al2O3-Al trilayer structures. Appl. Phys. Lett. 51, 1349 (1987).

    CAS  Article  Google Scholar 

  25. 25.

    D.A. Brevnov, G.V. Rama Rao, G.P. López, and P.B. Atanassov: Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochim. Acta 49, 2487 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    G. Sharma, M.V. Pishko, and C.A. Grimes: Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 42, 4738 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    K. Shimizu, K. Kobayashi, G.E. Thompson, and G.C. Wood: Development of porous anodic films on aluminum. Philos. Mag. A 66, 643 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    O. Jessensky, F. Muller, and U. Giosele: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).

    CAS  Article  Google Scholar 

  30. 30.

    J.P. O’Sullivan and G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511 (1970).

    Article  Google Scholar 

  31. 31.

    D.J. Sellmyer, M. Zheng, and R. Skomski: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    G.E. Thompson and G.C. Wood: Anodic films on aluminum. in Corrosion: Aqueous Processes and Passive Films, J.C. Scully, ed. (Academic Press, New York, NY, 1983).

  33. 33.

    I. Vrublevsky, V. Parkoun, V. Sokol, and J. Schreckenbach: Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 236, 270 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx: The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 222, 215 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    V.P. Parkhutik and V.I. Shershulsky: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (1992).

    CAS  Article  Google Scholar 

  36. 36.

    A.J. Yin, J. Li, W. Jian, A.J. Bennett, and J.M. Xu: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    M. Almasi Kashi, A. Ramazani, and A. Khayyatian: The influence of the ac electrodeposition conditions on the magnetic properties and microstructure of Co nanowire arrays. J. Phys. D: Appl. Phys. 39, 4130 (2006).

    Article  Google Scholar 

  38. 38.

    A. Saedi and M. Ghorbani: Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    M. Almasi Kashi, A. Ramazani, M. Ghaffari, and V.B. Isfahani: The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using nonsymmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    E.C. Stoner and E.P. Wohlfarth: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599–642 (1948).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saeid Soltanian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Najafi, M., Soltanian, S., Danyali, H. et al. Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer. Journal of Materials Research 27, 2382–2390 (2012). https://doi.org/10.1557/jmr.2012.198

Download citation