Analysis of effects of reactant particle size on phase transformations in the Ti–Si–Cu system using differential thermal analysis and x-ray diffraction


Effects of Ti and Si particle sizes on phase transformations of Ti–Si–Cu system were explored through differential thermal analysis (DTA), x-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). For Ti[15]Si[15]Cu[45] system, fine Ti easily dissolves into Si–Cu liquid to form Ti–Si–Cu liquid at ∼795 °C, which further participates into the reaction of β-Ti and Si to yield abundant quantity of Ti5Si3 at ∼917 °C. For Ti[150]Si[15]Cu[45] system, nonetheless, the reaction of coarse Ti with Si–Cu liquid involves more difficulty in forming the ternary liquid, which is the causal factor for the delay in the formation of Ti5Si3 to ∼948 °C. For Ti[15]Si[150]Cu[45] system, coarse Si results in the formation of insufficient Si–Cu liquid initially, whereas Ti–Cu liquid forms at ∼960 °C instead, which further reacts with coarse Si to form Ti–Si–Cu liquid, and then Ti5Si3is precipitated from the liquid.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    J.H. Schneibel and C.J. Rawn: Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Mater. 52, 3843 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    S. Gennari, U. Anselmi–Tamburini, F. Maglia, and G. Spinolo: Modeling the ignition of self-propagating combustion synthesis of transition metal aluminides. Intermetallics 18, 2385 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Q.L. Guan, H.Y. Wang, S.L. Li, W.N. Zhang, Lü S.J., and Q.C. Jiang: Effect of Fe addition on self-propagating high-temperature synthesis of Ti5Si3 in Fe–Ti–Si system. J. Alloys Compd. 456, 79 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    J.J. Williams, M.J. Kramer, and M. Akinc: Thermal expansion of Ti5Si3 with Ge, B, C, N, or O additions. J. Mater. Res. 15, 1780 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    A. Vyas, K.P. Rao, and Y.V.R.K. Prasad: Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders. J. Alloys Compd. 475, 252 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka, and H. Inui: Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure. Acta Mater. 58, 846 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    R. Mitra: Microstructure and mechanical behavior of reaction hot–pressed titanium silicide and titanium silicide–based alloys and composites. Metall. Mater. Trans. A 29, 1629 (1998).

    Article  Google Scholar 

  8. 8.

    H.Y. Wang, W.P. Si, S.L. Li, N. Zhang, and Q.C. Jiang: First–principles study of the structural and elastic properties of Ti5Si3 with substitutions Zr, V, Nb, and Cr. J. Mater. Res. 25, 2317 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    L. Zhang and J. Wu: Ti5Si3 and Ti5Si3-based alloys: alloying behavior, microstructure and mechanical property evaluation. Acta Mater. 46, 3535 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    B.Y. Kang, H.S. Ryoo, W. Hwang, S.K. Hwang, and S.W. Kim: Explosion synthesis of Ti5Si3–Cu intermetallic compound. Mater. Sci. Eng. A 270, 330 (1999).

    Article  Google Scholar 

  11. 11.

    H.C. Park, M.S. Kim, and S.K. Hwang: Consolidation of Ti5Si3–Cu alloy by hot deformation of elemental powder mixtures. Scr. Mater. 39, 1585 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    D.P. Riley, C.P. Oliver, and E.H. Kisi: In situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS). Intermetallics 14, 33 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    S.C. Tjongand Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49 (2000).

    Article  Google Scholar 

  14. 14.

    B.W. Chen and C.C. Chen: Simulations of fine ceramics cascade synthesized by the self-propagating high-temperature synthesis method. J. Mater. Res. 13, 1291 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    M.X. Zhang, Q.D. Hu, B. Huang, and J.G. Li: Fabrication of ZrC particles and its formation mechanism by self-propagating high-temperature synthesis from Fe–Zr–C elemental powders. J. Alloys Compd. 509, 8120 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    D.E. Alman: Reactive sintering of TiAl–Ti5Si3 in situ composites. Intermetallics 13, 572 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    H.Y. Wang, Lü S.J., M. Zha, S.T. Li, C. Liu, and Q.C. Jiang: Influence of Cu addition on the self-propagating high-temperature synthesis of Ti5Si3 in Cu–Ti–Si system. Mater. Chem. Phys. 111, 463 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    M.S. Khoshkhoo, M. Shamanian, A. Saidi, M.H. Abbasi, M. Panjehpour, and F.A. Javid: The effect of Mo particle size on SHS synthesis mechanism of MoSi2. J. Alloys Compd. 475, 529 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Q.C. Fan, H.F. Chai, and Z.H. Jin: Effects of particle size of reactant on characteristics of combustion synthesis of TiC–Fe cermet. J. Mater. Sci. 37, 2251 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    J. Trambukis and Z.A. Munir: Effect of particles dispersion on the mechanism of combustion synthesis of titanium silicide. J. Am. Ceram. Soc. 73, 1240 (1990).

    CAS  Article  Google Scholar 

  21. 21.

    A.O. Kunrath, I.E. Reimanis and J.J. Moore: Combustion synthesis of TiC–Cr3C2 composites. J. Alloys Compd. 329, 131 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    G.H. Zahid, T. Azhar, M. Musaddiq, S.S. Rizvi, M. Ashraf, N. Hussain, and M. Iqbal: In situ processing and aging behavior of an aluminium/Al2O3 composite. Mater. Des. 32, 1630 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    T.B. Massalski: Binary Alloy Phase Diagrams. 2nd ed. (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  24. 24.

    A. Berbecaru, M. Naka, and J.C. Schuster: On the liquidus surface and reaction scheme of the ternary system Cu–Si–Ti. Solid State Phenom. 127, 15 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, and Q.C. Jiang: Evolution process of the synthesis of TiC in the Cu–Ti–C system. J. Alloys Compd. 452, 298 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    N. Bochvar, Y. Du, D. Kevorkov, R. Nast, and P. Rogl: Copper–Silicon–Titanium. Materials Science International Team (MSIT), Landolt–Bornstein New Series IV/11A4 284.

  27. 27.

    S.W. Jo, G.W. Lee, J.T. Moon, and Y.S. Kim: On the formation of MoSi2 by self-propagating high-temperature synthesis. Acta Mater. 44, 4317 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    Q.D. Hu, P. Luo, Y.W. Yan, and J.G. Li: Microstructure evolution and wear properties of bulk MoSi2 fabricated by field-activated sintering. Int. J. Refract. Met. Hard Mater. 29, 470 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    S.C. Deevi: Diffusional reactions between Mo and Si in the synthesis and densification of MoSi2. Int. J. Refract. Met. Hard Mater. 13, 337 (1995).

    Article  Google Scholar 

Download references


This work is supported by The National Natural Science Foundation of China (No. 50671044) and The Foundation of Jilin University for Distinguished Young Scholars. Partial financial support comes from The Graduate Innovation Fund of Jilin University (20111045).

Author information



Corresponding author

Correspondence to Hui-Yuan Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lü, SJ., Wang, HY., Yang, ZZ. et al. Analysis of effects of reactant particle size on phase transformations in the Ti–Si–Cu system using differential thermal analysis and x-ray diffraction. Journal of Materials Research 27, 2615–2623 (2012).

Download citation