Doping properties of hydrogen in ZnO


The doping properties and stability of hydrogen in zinc oxide (ZnO) crystals have been investigated by cathodoluminescence (CL) spectroscopy. Hydrogen incorporation was achieved by hydrogen plasma at 200 °C. The ZnO near-band-edge (NBE) peak is dramatically enhanced, while the green emission at 2.4 eV is quenched with increasing hydrogen incorporation. These effects are attributed to hydrogen passivating green luminescence centers, which are most likely negatively charged zinc vacancy defects. E-beam irradiation of H-doped ZnO crystals by an intense electron beam with μW power reverses the hydrogen doping process. This effect is ascribed to the dissociation of H-related defects, formation of “hidden” H2, and electromigration of H+ under the influence of the local trapped charge-induced electric field. These results highlight the potential to modify the local luminescent properties of ZnO by e-beam irradiation.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. 2.

    C. Ton-That, M.R. Phillips, M. Foley, S.J. Moody, and A.P.J Stampfl: Surface electronic properties of ZnO nanoparticles. Appl. Phys. Lett. 92, 261916 (2008).

    Article  Google Scholar 

  3. 3.

    A. Janotti and C.G. Van de Walle: Hydrogen multicenter bonds. Nat. Mater. 6, 44 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).

    Article  Google Scholar 

  5. 5.

    P.F. Cai, J.B. You, X.W. Zhang, J.J. Dong, X.L. Yang, Z.G. Yin, and N.F. Chen: Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J. Appl. Phys. 105, 083713 (2009).

    Article  Google Scholar 

  6. 6.

    Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita: Effects of dopants and hydrogen on the electrical conductivity of ZnO. J. Eur. Ceram. Soc. 24, 139 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    E.V. Lavrov, F. Borrnert, and J. Weber: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO. Phys. Rev. B 71, 035205 (2005).

    Article  Google Scholar 

  8. 8.

    E.V. Lavrov, F. Herklotz, and J. Weber: Identification of two hydrogen donors in ZnO. Phys. Rev. B 79, 165210 (2009).

    Article  Google Scholar 

  9. 9.

    G.A. Shi, M. Stavola, S.J. Pearton, M. Thieme, E.V. Lavrov, and J. Weber: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005).

    Article  Google Scholar 

  10. 10.

    T. Sekiguchi, N. Ohashi, and Y. Terada: Effect of hydrogenation on ZnO luminescence. Jpn. J. Appl. Phys., Part 2 36, L289 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    C.C. Lin, H.P. Chen, H.C. Liao, and S.Y. Chen: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).

    Article  Google Scholar 

  12. 12.

    A. Dev, R. Niepelt, J.P. Richters, C. Ronning, and T. Voss: Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation. Nanotechnology 21, 065709 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    E.V. Lavrov, J. Weber, F. Borrnert, C.G. Van de Walle, and R. Helbig: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002).

    Article  Google Scholar 

  14. 14.

    B.G. Yacobi and D.B. Holt: Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990).

    Google Scholar 

  15. 15.

    D.C. Reynolds, D.C. Look, B. Jogai, and H. Morkoc: Similarities in the bandedge and deep-center photoluminescence mechanisms of ZnO and GaN. Solid State Commun. 101, 643 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    K. Maeda, M. Sato, I. Niikura, and T. Fukuda: Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, S.F. Yu, B.K. Tay, and H.H. Hng: Evolution of visible luminescence in ZnO by thermal oxidation of zinc films. Chem. Phys. Lett. 375, 113 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    A. Hoffmann, E.M. Malguth, and B.K. Meyer: Deep centers in ZnO, in Zinc Oxide: From Fundamental Properties Towards Novel Applications, edited by C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer-Verlag, Berlin Heidelberg, 2010).

  19. 19.

    C. Rauch, W. Gehlhoff, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, and M. Driess: Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals. J. Appl. Phys. 107, 024311 (2010).

    Article  Google Scholar 

  20. 20.

    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, and G. Cantwell: Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    Y.F. Dong, F. Tuomisto, B.G. Svensson, A.Y. Kuznetsov, and L.J. Brillson: Vacancy defect and defect cluster energetics in ion-implanted ZnO. Phys. Rev. B 81, 081201 (2010).

    Article  Google Scholar 

  22. 22.

    O. Lopatiuk, L. Chernyak, A. Osinsky, and J.Q. Xie: Lithium-related states as deep electron traps in ZnO. Appl. Phys. Lett. 87, 214110 (2005).

    Article  Google Scholar 

  23. 23.

    G.A. Shi, M. Stavola, and W.B. Fowler: Identification of an OH-Li center in ZnO: Infrared absorption spectroscopy and density functional theory. Phys. Rev. B 73, 081201 (2006).

    Article  Google Scholar 

  24. 24.

    K.M. Johansen, J.S. Christensen, E.V. Monakhov, A.Y. Kuznetsov, and B.G. Svensson: Deuterium diffusion and trapping in hydrothermally grown single crystalline ZnO. Appl. Phys. Lett. 93, 152109 (2008).

    Article  Google Scholar 

  25. 25.

    K.M. Johansen, H. Haug, E. Lund, E.V. Monakhov, and B.G. Svensson: Thermal stability of the OH-Li complex in hydrothermally grown single crystalline ZnO. Appl. Phys. Lett. 97, 211907 (2010).

    Article  Google Scholar 

  26. 26.

    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A.V. Rodina: Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    J. Cazaux: e-Induced secondary electron emission yield of insulators and charging effects. Nucl. Instrum. Methods Phys. Res., Sect. B 244, 307 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    J. Bang and K.J. Chang: Atomic structure and diffusion of hydrogen in ZnO. J. Korean Phys. Soc. 55, 98 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    M.G. Wardle, J.P. Goss, and P.R. Briddon: First-principles study of the diffusion of hydrogen in ZnO. Phys. Rev. Lett. 96, 205504 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    E.V. Lavrov, F. Herklotz, and J. Weber: Identification of hydrogen molecules in ZnO. Phys. Rev. Lett. 102, 185502 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    M. Toth, K. Fleischer, and M.R. Phillips: Direct experimental evidence for the role of oxygen in the luminescent properties of GaN. Phys. Rev. B 59, 1575 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    A. Janotti and C.G. Van de Walle: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

Download references


WethankMr. GeoffreyMcCrediefortechnicalassistance with hydrogen plasma processing. Financial support from the Australian Research Council is gratefully acknowledged.

Author information



Corresponding author

Correspondence to C. Ton-That.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weston, L., Ton-That, C. & Phillips, M.R. Doping properties of hydrogen in ZnO. Journal of Materials Research 27, 2220–2224 (2012).

Download citation