Measurement of Young’s modulus of anisotropic materials using microcompression testing

Abstract

Microcompression test was applied to determine the Young’s modulus for elastically anisotropic materials for two different orientations of single crystalline Si. Although there is a clear difference in the apparent Young’s moduli for the different orientations, a significant underestimation of Young’s modulus was observed resulting from the substrate deformation as observed in both finite element simulation and experiment. This effect decreases with increasing aspect ratio. To correct the deviation of the apparent Young’s modulus from the theoretical values, a systematic framework of microcompression test is suggested. The modified Sneddon correction using the indentation modulus instead of Young’s modulus successfully yields Young’s moduli of single crystalline silicon in the [100] and [111] directions to within 5.3% and 2.0% deviation, respectively.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE I

References

  1. 1.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  3. 3.

    J.J. Vlassak, M. Ciavarella, J.R. Barber, and X. Wang: The indentation modulus of elastically anisotropic materials for inden-ters of arbitrary shape. J. Mech. Phys. Solids 51, 1701 (2003).

    Article  Google Scholar 

  4. 4.

    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 304, 986 (2004).

    Article  Google Scholar 

  5. 5.

    J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56, 654 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    O. Kraft, P. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 8.1–8.25 (2010).

    Article  Google Scholar 

  7. 7.

    C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    C.A. Volkert, A. Donohue, and F. Spaepen: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).

    Article  Google Scholar 

  9. 9.

    D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 79 (2009).

    Article  Google Scholar 

  10. 10.

    H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate microcompression experiments. Scr. Mater. 54, 181 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Y.S. Choi, M.D. Uchic, T.A. Parthasarathy, and D.M. Dimiduk: Numerical study on microcompression tests of anisotropic single crystals. Scr. Mater. 57, 849 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    B. Moser, K. Wasmer, L. Barbieri, and J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  14. 14.

    J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53(6), 1821 (2005); Corrigendum. Acta Mater. 54 (6), 1705 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    W.A. Brantley: Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534 (1973).

    CAS  Article  Google Scholar 

  16. 16.

    R. Schwaiger, M. Weber, B. Moser, P. Gumbsch, and O. Kraft: Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation. J. Mater. Res. 27(1), 266 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Yang, J.C. Ye, J. Lu, F.X. Liu, and P.K. Liaw: Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 57, 1613 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    A. Ballato: Poisson’s ratio for tetragonal, hexagonal, and cubic crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 56 (1996).

    Article  Google Scholar 

  19. 19.

    D.R. Franca and A. Blouin: All-optical measurement of in-plane and out-of-plane Young’s modulus and Poisson’s ratio in silicon wafers by means of vibration modes. Meas. Sci. Technol. 15, 859 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    A. Kailer, K.G. Nickel, and Y.G. Gogotsi: Raman microspectro-scopy of nanocrystalline and amorphous phases in hardness indentations. J. Raman Spectrosc. 30, 939 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    V. Domnich and Y. Gogotsi: Phase transformation in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    J. Jang, M.J. Lance, S. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 4 (1998).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Joost Vlassak for helpful discussions and calculation of indentation moduli. This research was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the DFG Research Group FOR714 and Converging Research Center Program through the Ministry of Education, Science and Technology in Korea (2010K001435).

Author information

Affiliations

Authors

Corresponding author

Correspondence to In-suk Choi.

Additional information

Address all correspondence to this author

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, Is., Gan, Y., Kaufmann, D. et al. Measurement of Young’s modulus of anisotropic materials using microcompression testing. Journal of Materials Research 27, 2752–2759 (2012). https://doi.org/10.1557/jmr.2012.18

Download citation