Mono and dialkoxysilane surface modification of superparamagnetic iron oxide nanoparticles for application as magnetic resonance imaging contrast agents


In this study, we have developed and characterized two previously unstudied alkoxysilane surface chemistries for use with superparamagnetic iron oxide (SPIO) nanoparticles as a magnetic resonance imaging contrast agent. We modified superparamagnetic iron oxide nanoparticles (SPIO) using aminopropyl triethoxysilane and two analogous alkoxysilanes, aminopropyl dimethylethoxysilane and aminopropyl methyldiethoxysilane, to compare a mono- and dialkoxysilane, respectively, to a more commonly used trialkoxysilane as two new SPIO surface chemistries capable of forming ultrathin functional surface coatings. The ligand densities of the mono- and dialkoxysilane-modified SPIO produced in this study are consistent with near monolayers of ligands on the SPIO surface. We studied the chemical stability of the mono-, di-, and trialkoxysilane-modified SPIO in neutral and acidic media to evaluate the viability of these surface chemistries for use in long-term intracellular applications. The mono- and dialkoxysilane-modified SPIO demonstrate comparable chemical stability to the trialkoxysilane-modified SPIO, indicating that the mono- and dialkoxysilane are both viable new SPIO surface chemistries for future applications requiring minimally thick alkoxysilane surface coatings.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    Y. Anzai and M.R. Prince: Iron oxide-enhanced MR lymphography: The evaluation of cervical lymph node metastases in head and neck cancer. J. Magn. Reson. Imaging 7(1), 75–81 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    A. Moore, R. Weissleder, and A. Bogdanov: Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging 7(6), 1140–1145 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    A. Petri-Fink, M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann: Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26(15), 2685–2694 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    J. Lee, T. Isobe, and M. Senna: Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 177(2), 490–494 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    S.J. Lee, J.R. Jeong, S.C. Shina, J.C. Kimb, Y.H. Chang, Y.M. Chang, and J.D. Kim: Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J. Magn. Magn. Mater. 272-273(3), 2432–2433 (2004).

    Article  Google Scholar 

  6. 6.

    B.A. Moffat, G.R. Reddy, P. McConville, D.E. Hall, T.L. Chenevert, R.R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B.D. Ross: A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2(4), 324–332 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    C. Zhang, B. Wängler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R. Krüger, R. Huss, C. Seliger, W. Semmler, and F. Kiessling: Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: A promising tool to label cells for magnetic resonance imaging. Langmuir 23(3), 1427–1434 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S. Curtis, and M. Muhammed: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 16(12), 2344–2354 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    I. Koh, X. Wang, B. Varughese, L. Isaacs, S.H. Ehrman, and D.S. English: Magnetic iron oxide nanoparticles for biorecognition: Evaluation of surface coverage and activity. J. Phys. Chem. B 110(4), 1553–1558 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    K.D. Kim, S.S. Kim, and H.T. Kim: Formation and characterization of silica-coated magnetic nanoparticles by sol-gel method. J. Ind. Eng. Chem. 11(4), 584–589 (2005).

    CAS  Google Scholar 

  11. 11.

    D.K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15(8), 1617–1627 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, and H.E. Toma: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279(2–3), 210–217 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    N. Kohler, C. Sun, J. Wang, and M. Zhang: Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19), 8858–8864 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    I.J. Bruce and T. Sen: Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21(15), 7029–7035 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    R. De Palma, J. Trekker, S. Peeters, M.J. Van Bael, K. Bonroy, R. Wirix-Speetjens, G. Reekmans, W. Laureyn, G. Borghs, and G. Maes: Surface modification gamma-Fe2O3@SiO2 magnetic nanoparticles for the controlled interaction with biomolecules. J. Nanosci. Nanotechnol. 7(12), 4626–4641 (2007).

    Article  Google Scholar 

  16. 16.

    R. De Palma, S. Peeters, M.J. Van Bael, H. Van den Rul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, and G. Maes: Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 19(7), 1821–1831 (2007).

    Article  Google Scholar 

  17. 17.

    J.H. Moon, J.H. Kim, K. Kim, T. Kang, B. Kim, C. Kim, J.H. Hahn, and J.W. Park: Absolute surface density of the amine group of the aminosilylated thin layers: Ultraviolet-visible spectroscopy, second harmonic generation, and synchrotron-radiation photoelectron spectroscopy study. Langmuir 13(16), 4305–4310 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    S. Miyoshi, J.A. Flexman, D.J. Cross, K.R. Maravilla, Y. Kim, Y. Anzai, J. Oshima, and S. Minoshima: Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: Cell viability, differentiation, and intracellular localization. Mol. Imaging Biol. 7(4), 286–295 (2005).

    Article  Google Scholar 

  19. 19.

    E. Sykova and P. Jendelova: In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 161, 367–383 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    E.M. Shapiro, K. Sharer, S. Skrtic, and A.P. Koretsky: In vivo detection of single cells by MRI. Magn. Reson. Med. 55(2), 242–249 (2006).

    Article  Google Scholar 

  21. 21.

    M.F. Kircher, J.R. Allport, E.E. Graves, V. Love, L. Josephson, A.H. Lichtman, and R. Weissleder: In vivo high-resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63(20), 6838–6846 (2003).

    CAS  Google Scholar 

  22. 22.

    S. Valable, E.L. Barbiera, M. Bernaudinc, S. Roussel, C. Segebartha, E. Petit, and C. Rémy: In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage 37, S47–S58 (2007).

    Article  Google Scholar 

  23. 23.

    S. Mukherjee, R.N. Ghosh, and F.R. Maxfield: Endocytosis. Physiol. Rev. 77(3), 759–803 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    C.W. Lu, Y. Hung, J.K. Hsiao, M. Yao, T.H. Chung, Y.S. Lin, S.H. Wu, S.C. Hsu, H.M. Liu, C.Y. Mou, C.S. Yang, D.M. Huang, and Y.C. Chen: Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 7(1), 149–154 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    A.S. Arbab, L.B. Wilson, P. Ashari, E.K. Jordan, B.K. Lewis, and J.A. Frank: A model of lysosomal metabolism of dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging. NMR Biomed. 18(6), 383–389 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    T. Skotland, P.C. Sontum, and I. Oulie: In vitro stability analyses as a model for metabolism of ferromagnetic particles (ClariscanTM), a contrast agent for magnetic resonance imaging. J. Pharm. Biomed. Anal. 28(2), 323–329 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    A.J. Barker, B. Cage, S. Russek, and C.R. Stoldt: Ripening during magnetite nanoparticle synthesis: Resulting interfacial defects and magnetic properties. J. Appl. Phys. 98(6), 63528 (2005).

    Article  Google Scholar 

  28. 28.

    B.A. Larsen, M.A. Haag, N.J. Serkova, K.R. Shroyer, and C.R. Stoldt: Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19, 265102 (2008).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Conrad R. Stoldt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Larsen, B.A., Hurst, K.M., Ashurst, W.R. et al. Mono and dialkoxysilane surface modification of superparamagnetic iron oxide nanoparticles for application as magnetic resonance imaging contrast agents. Journal of Materials Research 27, 1846–1852 (2012).

Download citation