Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism

Abstract

The standing porous nanoplate-built ZnO hollow microspheres with micro/nanostructure are fabricated based on a modified hydrothermal strategy, using citrate as structural director, and subsequent annealing treatment. The hollow spheres are composed of the vertically standing and cross-linked single crystalline porous nanoplates with the exposed surface of nonpolar (10\(\bar 1\)0) planes. Experiments have revealed the structural evolution: the formation of amorphous spheres in the initial reaction stage, followed by surface crystallization and nanoplate outward growth accompanied by inward dissolution of the amorphous spheres. Citrate in the precursor solution plays a dominant role in the formation of such porous ZnO hollow spheres. A model is presented, based on citrate-induced amorphous sphere formation and kinetically controlled dissolution and crystal growth. The model describes the formation of the hollow spheres, thermodynamically and kinetically.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

References

  1. 1.

    Y. Zhao and L. Jiang: Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21, 3621 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    T.Y. Ma, X.J. Zhang, and Z.Y. Yuan: Hierarchical meso/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C 113, 12854 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    F. Lu, W. Cai, and Y.G. Zhang: ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 18, 1047 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    H.G. Zhang, Q.S. Zhu, Y. Zhang, Y. Wang, L. Zhao, and B. Yu: One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    B. Meyer, H. Rabaab, and D. Marx: Water adsorption on ZnO(1010): From single molecules to partially dissociated monolayers. Phys. Chem. Chem. Phys. 8, 1513 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Kikuchi, Q.R. Qian, M. Machida, and H. Tatsumoto: Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon 44, 195 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    X.B. Wang, W.P. Cai, Y.X. Lin, G.Z. Wang, and C.H. Liang: Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 20, 8582 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    W.W. Lu, S.Y. Gao, and J.J. Wang: One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J. Phys. Chem. C 112, 16792 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Y.C. Lu, L.L. Wang, D.J. Wang, T.F. Xie, L.P. Chen, and Y.H. Lin: A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity. Mater. Chem. Phys. 129, 281 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, and G.S. Guo: High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators, B 157, 565 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    E. Kowsari: Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J. Nanopart. Res. 13, 3363 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Y.Y. Zhang, W.Y. Fu, Y.M. Sui, H.B. Yang, J. Cao, M.H. Li, Y.X. Li, X.M. Zhou, Y. Leng, W.Y. Zhao, H. Chen, L. Zhang, Q. Jing, and H. Zhao: Twinned tabour-like ZnO: Surfactant-, template-free synthesis and gas sensing behaviors. Appl. Surf. Sci. 257, 5784 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    F. Caruso, R.A. Caruso, and H. Mohwald: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Y.G. Sun, B.T. Mayers, and Y.N. Xia: Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    P.R. Selvakannan and M. Sastry: Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem. Commun. 41, 1684 (2005).

    Article  Google Scholar 

  16. 16.

    Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    H.L. Xu and W.Z. Wang: Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    W. Ostwald: On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z. Phys. Chem. 34, 495 (1900).

    Google Scholar 

  19. 19.

    Y.X. Du and Q.X. Yuan: Catalyst-free synthesis of honeycomb-like and straight ZnO nanowires. J. Alloy. Comp. 494, 468 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    C. Li, Z.S. Yu, S.M. Fang, H.X. Wang, Y.H. Gui, J.Q. Xu, and R.F. Chen: Fabrication and gas sensing property of honeycomb-like ZnO. Chin. Chem. Lett. 19, 599 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Z.H. Jing and J.H. Zhan: Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20, 4547 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    X.Y. Zeng, J.L. Yuan, and L.D. Zhang: Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres. J. Phys. Chem. C 112, 3503 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, B.L. Zhu, S.M. Zhang, W.P. Huang, and S.H. Wu: Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des. 9, 3532 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723 (1940).

    CAS  Article  Google Scholar 

  25. 25.

    S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    CAS  Article  Google Scholar 

  26. 26.

    J.D. Verhoeven: Fundamentals of Physical Metallurgy, Ch. 8 (John Wiley & Sons, NY, 1975).

    Google Scholar 

  27. 27.

    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenziei, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, and H.F. Xu: Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    C.L. Kuo, T.J. Kuo, and M.H. Huang: Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109, 20115 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    J.D. Verhoeven: Fundamentals of Physical Metallurgy, Ch. 11, 12 (John Wiley & Sons, NY, 1975).

    Google Scholar 

  30. 30.

    Q. Hao, L.Q. Xu, G.D. Li, and Y.T. Qian: Hydrothermal synthesis of microscaled Cu@C polyhedral composites and their sensitivity to convergent electron beam. Langmuir 25, 6363 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    W. Zhao, X.Y. Song, G.Z. Chen, and S.X. Sun: One-step template-free synthesis of ZnWO4 hollow clusters. J. Mater. Sci. 44, 3082 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    X. Li, C.J. Tang, M. Ai, L. Dong, and Z. Xu: Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+NO reaction. Chem. Mater. 22, 4879 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Y.M. Sui, W.Y. Fu, H.B. Yang, Y. Zeng, Y.Y. Zhang, Q. Zhao, Y.G. Li, X.M. Zhou, Y. Leng, M.H. Li, and G.T. Zou: Low-temperature synthesis of Cu2O crystals: Shape evolution and growth mechanism. Cryst. Growth Des. 10, 99 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the China Postdoctoral Science Foundation (Grant No. 2011M501407) and Natural Science Foundation of China (Grant No. 21001002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weiping Cai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Cai, W., Wang, G. et al. Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism. Journal of Materials Research 27, 951–958 (2012). https://doi.org/10.1557/jmr.2012.15

Download citation