Investigation on the atomic structural evolution of as-prepared and annealed ZrCuAl metallic glasses


Atomic structures of the Zr48Cu45Al7 as-prepared and annealed metallic glasses (MGs) were investigated by performing the reverse Monte Carlo simulation on the synchrotron radiation-based experiments. It was found that although the annealed sample remains completely amorphous, the volumes of the Al-centered clusters evidently expand, which is attributed to the relatively longer Al–Zr bonds. As a result, the role of Al atoms as the glue atoms to connect and fix the Zr- and Cu-centered large clusters is accordingly weakened, which leads to the ease of the rearrangement of atoms and clusters in the glass state. This study provides an insight into the microstructures of MGs, which extends understanding of the structural evolution in the glass alloys during annealing prior to the precipitation of nanocrystals.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng.,R 44, 45 (2004).

    Article  Google Scholar 

  3. 3.

    A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Yoshizawa, S. Ogurna, and K. Yamauchi: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988).

    CAS  Article  Google Scholar 

  5. 5.

    A. Inoue, Y. Horio, Y.H. Kim, and T. Masumoto: Elevated-temperature strength of an Al88Ni9Ce2Fe1 amorphous alloy containing nanoscale fcc-Al particles. Mater. Trans. JIM 33, 669 (1992).

    CAS  Article  Google Scholar 

  6. 6.

    A. Inoue, D. Kawase, A.P. Tsai, T. Zhang, and T. Masumoto: Stability and transformation to crystalline phases of amorphous Zr-Al-Cu alloys with significant supercooled liquid region. Mater. Sci. Eng., A 178, 255 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    B.S. Murty and K. Hono: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng., A 312, 253 (2001).

    Article  Google Scholar 

  8. 8.

    A. Ishii, A. Iwase, Y. Fukumoto, Y. Yokoyama, T.J. Konno, and F. Hori: Effect of thermal annealing on the local structure in ZrCuAl bulk metallic glass. J. Alloys Compd 504, S230 (2010).

    Article  Google Scholar 

  9. 9.

    Q. Guo, J.H. Noh, P.K. Liaw, P.D. Rack, Y. Li, and C.V. Thompson: Density change upon crystallization of amorphous Zr-Cu-Al thin films. Acta Mater. 58, 3633 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    J. Saida, M. Matsushita, C. Li, and A. Inoue: Formation of the icosahedral quasicrystalline phase in Zr70Pd30 binary glassy alloy. Philos. Mag. Lett. 81, 39 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    K. Lu: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).

    Article  Google Scholar 

  12. 12.

    H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    T. Nagase, M. Nakamura, and Y. Umakoshi: Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass. Intermetallics 15, 211 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    J. Saida, A.D. Setyawan, and E. Matsubara: Effect of relaxation state on nucleation and grain growth of nanoscale quasicrystal in Zr-based bulk metallic glasses prepared under various cooling rates. Appl. Phys. Lett. 99, 061903 (2011).

    Article  Google Scholar 

  15. 15.

    J.F. Loffler and W.L. Johnson: Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10Be22. Appl. Phys. Lett. 76, 3394 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    G. He, Z. Bian, and G.L. Chen: Structures and properties of a Zr-based bulk glass alloy after annealing. Mater. Sci. Eng., A 270, 291 (1999).

    Article  Google Scholar 

  17. 17.

    X.L. Wang, J. Almer, C.T. Liu, Y.D. Wang, J.K. Zhao, A.D. Stoica, D.R. Haeffner, and W.H. Wang: In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys. Rev. Lett. 91, 265501 (2003).

    Article  Google Scholar 

  18. 18.

    D. Wang, H. Tan, and Y. Li: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2006).

    Article  Google Scholar 

  19. 19.

    L. Yang, J.Z. Jiang, T. Liu, T.D. Hu, and T. Uruga: Atomic structure in Zr70Cu29Pd1 metallic glass. Appl. Phys. Lett. 87, 061918 (2005).

    Article  Google Scholar 

  20. 20.

    W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, and E. Ma: Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    L. Yang, S. Yin, X.D. Wang, Q.P. Cao, J.Z. Jiang, K. Saksl, and H. Franz: Atomic structure in Zr70Ni30 metallic glass. J. Appl. Phys. 102, 083512 (2007).

    Article  Google Scholar 

  22. 22.

    J.L. Finney: Modelling the structures of amorphous metal and alloys. Nature 266, 309 (1977).

    CAS  Article  Google Scholar 

  23. 23.

    V.S. Stepanyuk, A. Szasz, A.A. Katsnelson, O.S. Trushin, H. Müller, and H. Kirchmayr: Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics. J. Non-Cryst. Solids 159, 80 (1993).

    CAS  Article  Google Scholar 

  24. 24.

    D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    S. Zhang, T. Ichitsubo, Y. Yokoyama, T. Yamamoto, E. Matsubara, and A. Inoue: Crystallization behavior and structural stability of Zr50Cu40Al10 bulk metallic glass. Mater. Trans. 50, 1340 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    T. Yamamoto, Y. Yokoyama, T. Ichitsubo, H. Kimura, E. Matsubara, and A. Inoue: Precipitation of the ZrCu B2 phase in Zr50Cu50-xAlx (x = 0, 4, 6) metallic glasses by rapidly heating and cooling. J. Mater. Res. 25 (4), 793 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    L. Yang, J.H. Xia, Q. Wang, C. Dong, L.Y. Chen, X. Ou, J.F. Liu, J.Z. Jiang, K. Klementiev, K. Saksl, H. Franz, J.R. Schneider, and L. Gerward: Design of Cu8Zr5-based bulk metallic glasses. Appl. Phys. Lett. 88, 241913 (2006).

    Article  Google Scholar 

  29. 29.

    N.N. Medvedev and Y.I. Naberukhin: Shape of the Delaunay simplices in dense random packings of hard and soft spheres. J. Non-Cryst. Solids 94, 402 (1987).

    CAS  Article  Google Scholar 

  30. 30.

    L. Yang and G.Q. Guo: Preferred clusters in metallic glasses. Chin. Phys. B 12, 126101 (2010).

    Article  Google Scholar 

  31. 31.

    L. Yang, G.Q. Guo, L.Y. Chen, S.H. Wei, J.Z. Jiang, and X.D. Wang: Atomic structure in Al-doped multicomponent bulk metallic glass. Scr. Mater. 63, 879 (2010).

    CAS  Article  Google Scholar 

Download references


The authors thank the HASYLAB in Germany and the Shanghai Synchrotron Radiation Facility in China for the use of the advanced synchrotron radiation facilities. Financial supports from the National Natural Science Foundation of China (Grant No. 10805027), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011071), and the NUAA Research Funding (Grant No. NS2010168) are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Liang Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, L., Huang, CL. & Guo, GQ. Investigation on the atomic structural evolution of as-prepared and annealed ZrCuAl metallic glasses. Journal of Materials Research 27, 1164–1168 (2012).

Download citation