Transport and surface conductivity in ZnO

Abstract

Control of the electrical properties of ZnO is difficult to achieve. Doping is affected by the presence of a n-type background. Magnetotransport measurements can extract detailed information on donors and acceptors, but characterization is complicated by effects such as the surface conductivity. This conducting layer can be activated by ambient illumination or by heating in the absence of oxygen. There are considerable differences in the behavior of the various polar and nonpolar crystal faces. This paper provides an overview of the properties of ZnO surface conductivity, as well as the methods which have been implemented to account for it while interpreting carrier transport measurements.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

References

  1. 1.

    Ü. Özgür, D. Hofstetter, and H. Morkoç: ZnO devices and applications: A review of current status and future prospects. Proc. IEEE 98, 1255 (2010).

    Google Scholar 

  2. 2.

    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morkoç: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Google Scholar 

  3. 3.

    D.C. Look: Progress in ZnO materials and devices. J. Electron. Mater. 35, 1299 (2006).

    CAS  Google Scholar 

  4. 4.

    A. Janotti and C.G. Van de Walle: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).

    Google Scholar 

  5. 5.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 (2005).

    CAS  Google Scholar 

  6. 6.

    V. Avrutin, D.J. Silversmith, and H. Morkoç: Doping asymmetry problem in ZnO: Current status and outlook. Proc. IEEE 98, 1269 (2010).

    CAS  Google Scholar 

  7. 7.

    Y.S. Choi, J.W. Kang, D.K. Hwang, and S.J. Park: Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 57, 26 (2010).

    CAS  Google Scholar 

  8. 8.

    O. Schmidt, P. Kiesel, C.G. Van de Walle, N.M. Johnson, J. Nause, and G.H. Döhler: Effects of an electrically conducting layer at the zinc oxide surface. Jpn. J. Appl. Phys. 44, 7271 (2005).

    CAS  Google Scholar 

  9. 9.

    R.J. Collins and D.G. Thomas: Photoconduction and surface effects with zinc oxide crystals. Phys. Rev. 112, 388 (1958).

    CAS  Google Scholar 

  10. 10.

    Y. Shapira, S.M. Cox, and D. Lichtman: Photodesorption from powdered zinc oxide. Surf. Sci. 50, 503 (1975).

    CAS  Google Scholar 

  11. 11.

    W. Göpel and U. Lampe: Influence of defects on the electronic structure of zinc oxide surfaces. Phys. Rev. B: Condens. Matter 22, 6447 (1980).

    Google Scholar 

  12. 12.

    I.V. Markevich, V.I. Kushnirenko, L.V. Borkovska, and B.M. Bulakh: Mechanism of formation of highly conductive layer on ZnO crystal surface. Solid State Commun. 136, 475 (2005).

    CAS  Google Scholar 

  13. 13.

    D.C. Look: Donors and acceptors in bulk ZnO grown by the hydrothermal, vapor-phase, and melt processes, in Zinc Oxide and Related Materials, edited by J. Christen, C. Jagadish, D.C. Look, T. Yao, and F. Bertram (Mater. Res. Soc. Symp. Proc. 957, Warrendale, PA, 2007) p. 127. 0957-K08-05.

    CAS  Google Scholar 

  14. 14.

    D.C. Look, H.L. Mosbacker, Y.M. Strzhemechny, and L.J. Brillson: Effects of surface conduction on Hall-effect measurements in ZnO. Superlattices Microstruct. 38, 406 (2005).

    CAS  Google Scholar 

  15. 15.

    D.C. Look, B. Claflin, and H.E. Smith: Origin of conductive surface layer in annealed ZnO. Appl. Phys. Lett. 92, 122108 (2008).

    Google Scholar 

  16. 16.

    I.V. Markevich, V.I. Kushnirenko, and B.M. Bulakh: Photo-induced changes of photoconductivity and exciton luminescence in ZnO crystals. Phys. Status Solidi B 244, 1549 (2007).

    CAS  Google Scholar 

  17. 17.

    A. Rose: Concepts in Photoconductivity and Allied Problems (John Wiley & Sons, New York, 1963) p. 43.

    Google Scholar 

  18. 18.

    H. Katoa, M. Sanoa, K. Miyamotoa, and T. Yao: Polarity control of ZnO on c-plane sapphire by plasma-assisted MBE. J. Cryst. Growth 275, e2459 (2005).

    Google Scholar 

  19. 19.

    G. Heiland and P. Kunstmann: Polar surfaces of ZnO crystals. Surf. Sci. 13, 71 (1969).

    Google Scholar 

  20. 20.

    A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, and N.M. Harrison: Stability of polar oxide surfaces. Phys. Rev. Lett. 86, 3811 (2001).

    CAS  Google Scholar 

  21. 21.

    G. Kreese, O. Dulub, and U. Diebold: Competing stabilization mechanism for the polar ZnO (0001)-Zn surface. Phys. Rev. B: Condens. Matter 68, 245409 (2003).

    Google Scholar 

  22. 22.

    T.E. Murphy, K. Moaazami, and J.D. Phillips: Trap-related photoconductivity in ZnO epilayers. J. Electron. Mater. 35, 543 (2006).

    CAS  Google Scholar 

  23. 23.

    A. Wander and N.M. Harrison: The stability of polar oxide surfaces: The interaction of H2O with ZnO(0001) and ZnO(000-1). J. Chem. Phys. 115, 2313 (2001).

    Google Scholar 

  24. 24.

    A. Yamamoto, Y. Moriwaki, K. Hattori, and H. Yanagi: A comparative study of photoluminescence of Zn-polar and O-polar faces in single crystal ZnO using moment analysis. Appl. Phys. Lett. 98, 061907 (2011).

    Google Scholar 

  25. 25.

    S.A. Chevtchenko, J.C. Moore, Ü. Özgür, X. Gu, A.A. Baski, and H. Morkoç: Comparative study of the (0001) and (000-1) surfaces of ZnO. Appl. Phys. Lett. 89, 182111 (2006).

    Google Scholar 

  26. 26.

    M.W. Allen, C.H. Swartz, T.H. Myers, T.D. Veal, C.F. McConville, and S.M. Durbin: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B: Condens. Matter 81, 075211 (2010).

    Google Scholar 

  27. 27.

    M. Schmeits: Electrical conduction in semiconductor junctions with interface dipole layers. J. Appl. Phys. 80, 15 (1996).

    Google Scholar 

  28. 28.

    M.W. Allen, P. Miller, R.J. Reeves, and S.M. Durbin: Influence of spontaneous polarization on the electrical and optical properties of bulk, single crystal ZnO. Appl. Phys. Lett. 90, 062104 (2007).

    Google Scholar 

  29. 29.

    M.W. Allen, R.J. Mendelsberg, R.J. Reeves, and S.M. Durbin: Oxidized noble metal Schottky contacts to n-type ZnO. Appl. Phys. Lett. 94, 103508 (2009).

    Google Scholar 

  30. 30.

    H.J. Krusemeyer: Surface potential, field effect mobility, and surface conductivity of ZnO crystals. Phys. Rev. 114, 655 (1959).

    Google Scholar 

  31. 31.

    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.I. Belogorokhov, E.A. Kozhukhova, A.V. Markov, A. Osinsky, J.W. Dong, and S.J. Pearton: Persistent photoconductivity in p-type ZnO(N) grown by molecular beam epitaxy. Appl. Phys. Lett. 90, 132103 (2007).

    Google Scholar 

  32. 32.

    B. Claflin, D.C. Look, S.J. Park, and G. Cantwell: Persistent n-type photoconductivity in p-type ZnO. J. Cryst. Growth 287, 16 (2006).

    CAS  Google Scholar 

  33. 33.

    O.F. Schirmer and D. Zwingel: The yellow luminescence of zinc oxide. Solid State Commun. 8, 1559 (1970).

    CAS  Google Scholar 

  34. 34.

    O. Lopatiuk, L. Chernyaka, A. Osinsky, and J.Q. Xie: Lithium-related states as deep electron traps in ZnO. Appl. Phys. Lett. 87, 214110 (2005).

    Google Scholar 

  35. 35.

    J. Barzola-Quiquia, P. Esquinazi, M. Villafuerte, S.P. Heluani, A. Pöppl, and K. Eisinger: Origin of the giant negative photoresistance of ZnO single crystals. J. Appl. Phys. 108, 073530 (2010).

    Google Scholar 

  36. 36.

    O. Schmidt, P. Kiesel, D. Ehrentraut, T. Fukuda, and N.M. Johnson: Electrical characterization of ZnO, including analysis of surface conductivity. Appl. Phys. A 88, 71 (2007).

    CAS  Google Scholar 

  37. 37.

    D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, and K. Nordlund: Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 95, 225502 (2005).

    CAS  Google Scholar 

  38. 38.

    A. Janotti and C.G. Van de Walle: Hydrogen multicentre bonds. Nat. Mater. 6, 44 (2007).

    CAS  Google Scholar 

  39. 39.

    N.H. Nickel: Hydrogen transport properties in zinc oxide. Superlattices Microstruct. 42, 3 (2007).

    CAS  Google Scholar 

  40. 40.

    M. Losurdo and M.M. Giangregorio. Interaction of atomic hydrogen with Zn-polar and O-polar ZnO surfaces. Appl. Phys. Lett. 86, 091901 (2005).

    Google Scholar 

  41. 41.

    D. Look: Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons, Edmunds, UK, 1989) p. 55ff.

    Google Scholar 

  42. 42.

    B.L. Gelmont, M. Shur, and M. Stroscio: Polar optical-phonon scattering in three- and two-dimensional electron gases. J. Appl. Phys. 77, 15 (1995).

    Google Scholar 

  43. 43.

    D.L. Rode: Semiconductors and Semimetals (Academic Press, 10, New York, 1975) p. 84.

    Google Scholar 

  44. 44.

    N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar: Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 93, 126 (2003).

    CAS  Google Scholar 

  45. 45.

    X. Yang and N.C. Giles: Hall effect analysis of bulk ZnO comparing different crystal growth techniques. J. Appl. Phys. 105, 063709 (2009).

    Google Scholar 

  46. 46.

    M. Cattia, Y. Noelb, and R. Dovesi: Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations. J. Phys. Chem. Solids 64, 2183 (2003).

    Google Scholar 

  47. 47.

    S. Shokhovets, G. Gobsch, and O. Ambacher: Conduction band parameters of ZnO. Superlattices Microstruct. 39, 299 (2006).

    CAS  Google Scholar 

  48. 48.

    J. Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, UK, 2003) pp. 187–243.

    Google Scholar 

  49. 49.

    S.J. Chen, Y.C. Liu, C.L. Shao, C.S. Xu, Y.X. Liu, L. Wang, B.B. Liu, and G.T. Zou: Reduction of the transverse effective charge of optical phonons in ZnO under pressure. Appl. Phys. Lett. 96, 231906 (2010).

    Google Scholar 

  50. 50.

    A. Janotti and C.G. Van de Walle: Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO. Phys. Rev. B: Condens. Matter 75, 121201 (2007).

    Google Scholar 

  51. 51.

    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch: Electrical properties of bulk ZnO. Solid State Commun. 105, 399 (1998).

    CAS  Google Scholar 

  52. 52.

    X. Yang, C. Xu, and N.C. Giles: Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent Hall measurements. J. Appl. Phys. 104, 073727 (2008).

    Google Scholar 

  53. 53.

    A.R. Hutson: Hall effect studies of doped zinc oxide single crystals. Phys. Rev. 108, 222 (1957).

    CAS  Google Scholar 

  54. 54.

    D.L. Rode: Semiconductors and Semimetals (Academic Press, 10, New York, 1975) p. 19.

    Google Scholar 

  55. 55.

    F. Bertazzi, E. Bellotti, E. Furno, and M. Goano: Experimental electron mobility in ZnO: A reassessment through Monte Carlo simulation. J. Electron. Mater. 38, 1677 (2009).

    CAS  Google Scholar 

  56. 56.

    D.C. Look and J.R. Sizelove: Dislocation scattering in GaN. Phys. Rev. Lett. 82, 1237 (1999).

    CAS  Google Scholar 

  57. 57.

    J.W. Sun, Y.M. Lu, Y.C. Liu, D.Z. Shen, Z.Z. Zhang, B.H. Li, J.Y. Zhang, B. Yao, D.X. Zhao, and X.W. Fan: Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 89, 232101 (2006).

    Google Scholar 

  58. 58.

    D.C. Look: Quantitative analysis of surface donors in ZnO. Surf. Sci. 601, 5315 (2007).

    CAS  Google Scholar 

  59. 59.

    I. Bisotto, C. Granier, S. Brochen, A. Ribeaud, P. Ferret, G. Chicot, J. Rothman, J. Pernot, and G. Feuillet: Residual doping in homoepitaxial zinc oxide layers grown by metal organic vapor phase epitaxy. Appl. Phys. Express 3, 095802 (2010).

    Google Scholar 

  60. 60.

    H. Yamaguchi, T. Komiyama, Y. Chonan, Y. Ishidsuka, R. Ito, and T. Aoyama: Drift mobility of photocarriers on Zn- and O-polar surfaces of ZnO. Phys. Status Solidi C 7, 300 (2010).

    CAS  Google Scholar 

  61. 61.

    H. Tampo, A. Yamada, P. Fons, H. Shibata, K. Matsubara, K. Iwata, K. Nakahara, H. Takasu, and S. Niki: Degenerate layers in epitaxial ZnO films grown on sapphire substrates. Appl. Phys. Lett. 84, 4413 (2004).

    Google Scholar 

  62. 62.

    V. Petukhov, J. Stoemenos, J. Rothman, A. Bakin, and A. Waag: Interpretation of transport measurements in ZnO-thin films. Appl. Phys. A 102, 161 (2011).

    CAS  Google Scholar 

  63. 63.

    D.C. Look, R.C. Scott, K.D. Leedy, and B. Bayraktaroglu: Donor and acceptor concentrations from a single mobility measurement in degenerate semiconductors: ZnO. Proc. SPIE Int. Soc. Opt. Eng. 7940, 794003 (2011).

    Google Scholar 

  64. 64.

    D.C. Look, K.D. Leedy, D.H. Tomich, and B. Bayraktaroglu: Mobility analysis of highly conducting thin films: Application to ZnO. Appl. Phys. Lett. 96, 062102 (2010).

    Google Scholar 

  65. 65.

    D.C. Look: Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20, S55 (2005).

    CAS  Google Scholar 

  66. 66.

    Y. Marfaing and A. Lusson: Doping engineering of p-type ZnO. Superlattices Microstruct. 38, 385 (2005).

    CAS  Google Scholar 

  67. 67.

    C.M. Wolfe and G.E. Stillman: Anomalously high “mobility” in semiconductors. Appl. Phys. Lett. 18, 205 (1971).

    CAS  Google Scholar 

  68. 68.

    O. Bierwagen, T. Ive, C.G. Van de Walle, and J.S. Speck: Causes of incorrect carrier-type identification in Van der Pauw Hall measurements. Appl. Phys. Lett. 93, 242108 (2008).

    Google Scholar 

  69. 69.

    J.L. Zhao, X.M. Li, A. Krtschil, A. Krost, W.D. Yu, Y.W. Zhang, Y.F. Gu, and X.D. Gao: Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis. Appl. Phys. Lett. 90, 062118 (2007).

    Google Scholar 

  70. 70.

    J. Lüa, K. Huang, X. Chen, J. Zhu, F. Meng, X. Song, and Z. Sun: Enhanced photo-induced hydrophilicity of the sol–gel-derived ZnO thin films by Na-doping. Appl. Surf. Sci. 257, 2086 (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig H. Swartz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swartz, C.H. Transport and surface conductivity in ZnO. Journal of Materials Research 27, 2205–2213 (2012). https://doi.org/10.1557/jmr.2012.133

Download citation