Evaporation-induced self-assembly of capillary cylindrical colloidal crystal in a face-centered cubic structure with controllable thickness

Abstract

The fabrication of capillary cylindrical crystals from colloidal suspension with controllable thickness by evaporation-induced self-assembly method has been investigated. The thickness of the hollow cylinders can be precisely controlled ranging from monolayer to tens of layers by varying the suspension concentration. With the increase of suspension concentration, the particles fill completely inside capillaries to form solid bulk crystals and the critical values are found in capillaries with various diameters. Scanning electron microscope images confirm the face-centered-cubic structure in both crystals, but with two different [111] crystalline directions. The experiment parameters, such as the solvent, concentration of the suspension and inner diameter of capillary are studied for the quality and the number of film layers control. Qualitative analysis has been performed to probe into the solvent evaporation modes and the mechanism of particle arrangement inside the capillary.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade: Photonic Crystals 2 nd ed. (Princeton Univ. Press, Princeton, NJ, 2008).

    Google Scholar 

  2. 2.

    V.L. Colvin: From opals to optics: Colloidal photonic crystals. MRS Bull. 26 (8), 637 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    C.I. Aguirre, E. Reguera, and A. Stein: Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20 (16), 2565 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    H. Míguez, F. Meseguer, C. López, A. Blanco, J.S. Moya, J. Requena, A. Mifsud, and V. Fornés: Control of the photonic crystal properties of fcc packed submicron SiO2 spheres by sintering. Adv. Mater. 10 (6), 480 (1998).

    Article  Google Scholar 

  5. 5.

    P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11 (8), 2132 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    A. van Blaaderen, R. Ruel, and P. Wiltzius: Template-directed colloidal crystallization. Nature 385 (6614), 321 (1997).

    Article  Google Scholar 

  7. 7.

    C-H. Lai, Y-J. Huang, P-W. Wu, and L-Y. Chen: Rapid fabrication of cylindrical colloidal crystals and their inverse opals. J. Electrochem. Soc. 157 (3), P23 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Y.D. Yin, Y. Lu, B. Gates, and Y.N. Xia: Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123 (36), 8178 (2001).

    Article  Google Scholar 

  9. 9.

    S.M. Yang, H. Míguez, and G.A. Ozin: Opal circuits of light-planarized microphotonic crystal chips. Adv. Funct. Mater. 12 (7), 425 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    Y.H. Ye, T.S. Mayer, I.C. Khoo, I.B. Divliansky, N. Abrams, and T.E. Mallouk: Self-assembly of three-dimensional photonic-crystals with air-core line defects. J. Mater. Chem. 12, 3637 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Y.H. Ye, S. Badilescu, V.V. Truong, P. Rochon, and A. Natansohn: Self-assembly of colloidal spheres on patterned substrates. Appl. Phys. Lett. 79 (6), 872 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    B. Kang-Hyun and A. Gopinath: Self-assembled photonic crystal waveguides. IEEE Photonics Technol. Lett. 17 (2), 351 (2005).

    Article  Google Scholar 

  13. 13.

    H. Míguez, S.M. Yang, N. Tetreault, and G.A. Ozin: Oriented free-standing three-dimensional silicon inverted colloidal photonic crystal microfibers. Adv. Mater. 14 (24), 1805 (2002).

    Article  Google Scholar 

  14. 14.

    Y. Lin, P.R. Herman, C.E. Valdivia, J. Li, V. Kitaev, and G.A. Ozin: Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber. Appl. Phys. Lett. 86 (12), 121106 (2005).

    Article  Google Scholar 

  15. 15.

    Y.K. Lin, P.R. Herman, and W. Xu: In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. J. Appl. Phys. 102 (7), 073106 (2007).

    Article  Google Scholar 

  16. 16.

    W. Guo, M. Wang, P. Yu, and Q. Liu: Fabrication of 3D colloidal photonic crystals in cavity of optical fiber end face. Chin. Opt. Lett. 8 (5), 515 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    W. Guo, M. Wang, W. Xia, and L. Dai: Pressure and temperature controlled self-assembly of high-quality colloidal crystal films on optical fibers. Opt. Commun. 285 (6), 1259 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    M. Megens, C.M. van Kats, P. Bösecke, and W.L. Vos: In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering. Langmuir 13 (23), 6120 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    H. Wang, X. Li, H. Nakamura, M. Miyazaki, and H. Maeda: Continuous particle self-arrangement in a long microcapillary. Adv. Mater. 14 (22), 1662 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    J.H. Moon, S. Kim, G.R. Yi, Y.H. Lee, and S.M. Yang: Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 20 (5), 2033 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    G.Q. Liu, Y.B. Liao, Z.M. Liu, and Y. Chen: Characteristic investigation of high quality three-dimensional photonic crystals fabricated by self-assembly: Theory analysis, simulation and measurement. J. Opt. A: Pure Appl. Opt. 10 (11), 115202 (2008).

    Article  Google Scholar 

  22. 22.

    G.Q. Liu, Z.S. Wang, and Y.H. Ji: Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method. Thin Solid Films 518 (18), 5083 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Y-W. Chung, I-C. Leu, J-H. Lee, and M-H. Hon: Influence of humidity on the fabrication of high-quality colloidal crystals via a capillary-enhanced process. Langmuir 22 (14), 6454 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    A.S. Dimitrov and K. Nagayama: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12 (5), 1301 (1996).

    Article  Google Scholar 

  25. 25.

    D.J. Norris, E.G. Arlinghaus, L. Meng, R. Heiny, and L.E. Scriven: Opaline photonic crystals: How does self-assembly work? Adv. Mater. 16 (16), 1393 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    R.G. Shimmin, A.J. DiMauro, and P.V. Braun: Slow vertical deposition of colloidal crystals: A Langmuir- Blodgett process? Langmuir 22 (15), 6507 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    G. Lozano and H. Míguez: Growth dynamics of self-assembled colloidal crystal thin films. Langmuir 23 (20), 9933 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    L.K. Teh, N.K. Tan, C.C. Wong, and S. Li: Growth imperfections in three-dimensional colloidal self- assembly. Appl. Phys. A: Mater. Sci. Process. 81 (7), 1399 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    G. Lozano and H. Míguez: Relation between growth dynamics and the spatial distribution of intrinsic defects in self-assembled colloidal crystal films. Appl. Phys. Lett. 92 (9), 091904 (2008).

    Article  Google Scholar 

  30. 30.

    G.S. Lozano, L.A. Dorado, R.A. Depine, and H. Míguez: Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films. J. Mater. Chem. 19 (2), 185 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, and D.A. Weitz: Grain boundary scars and spherical crystallography. Science 299 (5613), 1716 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    H. Míguez, F. Meseguer, C. López, A. Mifsud, J.S. Moya, and L. Vázquez: Evidence of FCC crystallization of SiO2 nanospheres. Langmuir 13 (23), 6009 (1997).

    Article  Google Scholar 

  33. 33.

    B. Cheng, P. Ni, C. Jin, Z. Li, D. Zhang, P. Dong, and X. Guo: More direct evidence of the fcc arrangement for artificial opal. Opt. Commun. 170 (1–3), 41 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    E.G. Arlinghaus: Microflows, pore and matrix evolution in latex coatings. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 2004.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61178044, 91123015), the Key Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 10KJA510024), and the Key Program of Science and Technology of Jiangsu province, China (Grant No. BE2008138).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, W., Wang, M., Xia, W. et al. Evaporation-induced self-assembly of capillary cylindrical colloidal crystal in a face-centered cubic structure with controllable thickness. Journal of Materials Research 27, 1663–1671 (2012). https://doi.org/10.1557/jmr.2012.128

Download citation