Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7-X/ BaSnO3 thin films


In this article, we report the unique microstructural characteristics of YBa2Cu3O7-x (YBCO)/BaSnO3 (BSO) nanocomposite thin films on LaAlO3 (LAO) substrates. The BSO secondary phase grows as self-assembled vertically aligned nanopillars uniformly distributed in the superconducting YBCO matrix. Detailed microstructure and strain studies including x-ray diffraction, cross-section and plan-view transmission electron microscopy, and geometric phase analysis reveal that, as the BSO doping concentration varied from 2 mol% to 20 mol%, the nanopillar density increased from 0.26 × 1011/cm2 to 1.44 × 1011/cm2 while the diameter of the nanopillars remains relatively constant (7–8 nm in diameter). The strain state of the YBCO matrix is affected by both lateral and vertical lattice strains; while, the BSO lattice is strongly tuned by YBCO rather than the substrate. A high-density array of dislocations in the order of 1013/cm2 was observed along the vertical heterogeneous interfaces throughout the YBCO film thickness for all doping concentrations.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    O.I. Lebedev, J. Verbeeck, G. Van Tendeloo, O. Shapoval, A. Belenchuk, V. Moshnyaga, B. Damashcke, and K. Samwer: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1-x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).

    Article  Google Scholar 

  2. 2.

    J. Ma, J.M. Hu, Z. Li, and C.W. Nan: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 31101 (2008).

    Article  Google Scholar 

  4. 4.

    S.A. Harrington, J.H. Durrell, H. Wang, S.C. Wimbush, C.F. Tsai, and J.L. MacManus-Driscoll: Understanding nanoparticle self-assembly for a strong improvement in functionality in thin film nanocomposites. Nanotechnology 21, 235702 (2010).

    Article  Google Scholar 

  5. 5.

    H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    J.L. MacManus-Driscoll, P. Zerrer, H.Y. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, and Q.X. Jia: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    H. Yang, H.Y. Wang, J. Yoon, Y.Q. Wang, M. Jain, D.M. Feldmann, P.C. Dowden, J.L. MacManus-Driscoll, and Q.X. Jia: Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    J. Yoon, S. Cho, J.H. Kim, J. Lee, Z.X. Bi, A. Serquis, X.H. Zhang, A. Manthiram, and H.Y. Wang: Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid-oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Z.X. Bi, J.H. Lee, H. Yang, Q.X. Jia, J.L. MacManus-Driscoll, and H.Y. Wang: Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)x:(Sm2O3)1-x thin films. J. Appl. Phys. 106, 94309 (2009).

    Article  Google Scholar 

  10. 10.

    A.P. Chen, Z.X. Bi, C.F. Tsai, J. Lee, Q. Su, X.H. Zhang, Q.X. Jia, J.L. MacManus-Driscoll, and H.Y. Wang: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987).

    CAS  Article  Google Scholar 

  12. 12.

    S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, and M. Maley: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    S.C. Wimbush, J.H. Durrell, C.F. Tsai, H. Wang, Q.X. Jia, M.G. Blamire, and J.L. MacManus-Driscoll: Enhanced critical current in YBa2Cu3O7-δ thin films through pinning by ferromagnetic YFeO3 nanoparticles. Supercond. Sci. Technol. 23, 45019 (2010).

    Article  Google Scholar 

  14. 14.

    T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430, 867 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    B. Dam, J.M. Huijbregtse, and J.H. Rector: Strong pinning linear defects formed at the coherent growth transition of pulsed-laser-deposited YBa2Cu3O7-δ films. Phys. Rev. B 65, 64528 (2002).

    Article  Google Scholar 

  16. 16.

    J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, and D.E. Peterson: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3. Nat. Mater. 3, 439 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    S.R. Foltyn, H. Wang, L. Civale, Q.X. Jia, P.N. Arendt, B. Maiorov, Y. Li, M.P. Maley, and J.L. MacManus-Driscoll: Overcoming the barrier to 1000 A/cm width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005).

    Article  Google Scholar 

  18. 18.

    S. Kang, A. Goyal, J. Li, A.A. Gapud, P.M. Martin, L. Heatherly, J.R. Thompson, D.K. Christen, F.A. List, M. Paranthaman, and D.F. Lee: High-performance high-Tc superconducting wires. Science 311, 1911 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    C.V. Varanasi, J. Burke, L. Brunke, H. Wang, M. Sumption, and P.N. Barnes: Enhancement and angular dependence of transport critical current density in pulsed laser deposited YBa2Cu3O7-x+BaSnO3 films in applied magnetic fields. J. Appl. Phys. 102, 63909 (2007).

    Article  Google Scholar 

  20. 20.

    C.V. Varanasi, J. Burke, L. Brunke, H. Wang, J.H. Lee, and P.N. Barnes: Critical current density and microstructure variations in YBa2Cu3O7-x+BaSnO3 films with different concentrations of BaSnO3.J. Mater. Res. 23, 3363 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    S.H. Wee, A. Goyal, E.D. Specht, C. Cantoni, Y.L. Zuev, V. Selvamanickam, and S. Cook: Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa2Cu3O7-δ films. Phys. Rev. B 81, 140503 (2010).

    Article  Google Scholar 

  22. 22.

    S.H. Wee, A. Goyal, Y.L. Zuev, C. Cantoni, V. Selvamanickam, and E.D. Specht: Formation of, double-perovskite, nanocolumns and their contribution to flux-pinning and Jc in Nb-doped YBa2Cu3O7-δ films. Appl. Phys. Express 3, 023101 (2010).

    Article  Google Scholar 

  23. 23.

    C. Cantoni, Y.F. Gao, S.H. Wee, E.D. Specht, J. Gazquez, J.Y. Meng, S.J. Pennycook, and A. Goyal: Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5, 4783 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    H.Y. Wang and J. Wang: Interfacial defects and flux-pinning effects in nanostructured YBa2Cu3O7-δ thin films. IEEE Trans. Appl. Supercond. 19, 3395 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    P.N. Barnes, T.J. Haugan, C.V. Varanasi, and T.A. Campbell: Flux pinning behavior of incomplete multilayered lattice structures in YBa2Cu3O7-δ. Appl. Phys. Lett. 85, 4088 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    W.L. Winterbottom: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303 (1967).

    CAS  Article  Google Scholar 

  27. 27.

    P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita: Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films (M = Zr, Sn). Supercond. Sci. Technol. 21, 32002 (2008).

    Article  Google Scholar 

  28. 28.

    A. Ichinose, P. Mele, T. Horide, K. Matsumoto, G. Goto, M. Mukaida, R. Kita, Y. Yoshida, and S. Horii: Microstructures of REBa2Cu3Oy adding BaZrO3 or BaSnO3. Physica C 468, 1627 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    J. Narayan and B.C. Larson: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    M.G. Blamire, J.L. MacManus-Driscoll, N.D. Mathur, and Z.H. Barber: The materials science of functional oxide thin films. Adv. Mater. 21, 3827 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    S.R. Foltyn, H. Wang, L. Civale, B. Maiorov, and Q.X. Jia: The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-δ coatings. Supercond. Sci. Technol. 22, 125002 (2009).

    Article  Google Scholar 

Download references


This research was funded by the Air Force Office of Scientific Research (Contract No.: FA9550-09-1-0114), and AFRL–Propulsion Directorate. The TEM characterization effort was supported by National Science Foundation (NSF-0846504). J.H. Kwon was supported by the Undergraduate Summer Research program at Texas A&M University.

Author information



Corresponding author

Correspondence to Haiyan Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, Y., Tsai, CF., Wang, J. et al. Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7-X/ BaSnO3 thin films. Journal of Materials Research 27, 1763–1769 (2012).

Download citation