Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells

Abstract

In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J.B. Goodenough and Y. Kim: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    K. Xu: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    E. Peled and H. Straze: The kinetics of the magnesium electrode in thionyl chloride solutions. J. Electrochem. Soc. 124, 1030 (1977).

    CAS  Article  Google Scholar 

  4. 4.

    E. Peled: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047 (1979).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Wang and P. Balbuena, eds: Lithium Ion Batteries: Solid Electrolyte Interphase (Imperial College Press, London2004).

    Google Scholar 

  6. 6.

    M.G.S.R Thomas, P.G. Bruce, and J.B. Goodenough: AC impedance analysis of polycrystalline insertion electrodes: Application to Li1-xCoO2. J. Electrochem. Soc. 132, 1521 (1985).

    CAS  Article  Google Scholar 

  7. 7.

    L. Yang, B. Ravdel, and B. Lucht: Electrolyte reactions with the surface of high voltage Li Ni0.5Mn1.5O4 cathodes for lithium ion batteries. Electrochem. Solid-State Lett. 13, A95 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    A.V. Cresce and K. Xu: Electrolyte additive in support of 5V Li ion chemistry. J. Electrochem. Soc. 158, A337 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    K. Xu: Whether EC and PC differ in interphasial chemistry on graphitic anodes and how. J. Electrochem. Soc. 156, A751 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    A. Hérold: Research on the graphite intercalation compounds. Bull. Soc. Chim. Fr. 187, 999 (1955).

    Google Scholar 

  11. 11.

    A.N. Dey and B.P. Sullivan: The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 117, 222 (1970).

    CAS  Article  Google Scholar 

  12. 12.

    R. Yazami and P.H. Touzain: A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    T. Nagaura: Li ion batteries. In Proceedings of the 5th International Seminar on lithium battery technology and applications, Deerfield Beach, FL. March 5-7, 1990. Florida Educational Seminars Inc., Boca Raton, FL, 1990.

    Google Scholar 

  14. 14.

    R. Fong, U. von Sacken, and J.R. Dahn: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    D. Aurbach, M.L. Daroux, P.W. Faguy, and E. Yeager: Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    D. Aurbach, Y. Gofer, and M. Ben-Zion: Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163 (1992).

    Article  Google Scholar 

  17. 17.

    D. Aurbach, B. Markovsky, A. Schecter, Y. Ein-Eli, and H. Cohen: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    K. Xu, U. Lee, S. Zhang, and T.R. Jow: Synthesis and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. J. Phys. Chem. B. 110, 7708 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    K. Kanamura, H. Tamura, S. Shiraishi, and Z. Takehara: XPS analysis of lithium surfaces following immersions in various solvents containing LiBF4. J. Electrochem. Soc. 142, 340 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    E. Peled, D. Golodnitsky, C. Menachem, D. Bar-Tow: An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145, 3482 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    G.V. Zhuang, K. Xu, H. Yang, T.R. Jow, and P.N. Ross Jr: Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2M LiPF6/EC: EMC electrolyte. J. Phys. Chem. B 109, 17567 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    S. Malmgren, H. Rensmo, T. Gustafsson, M. Gorgoi, and K. Edström: Nondestructive depth profiling of the solid electrolyte interphase on LiFePO4 and graphite electrodes. ECS Trans. 25, 121 (2010).

    Google Scholar 

  23. 23.

    G.V. Zhuang and P.N. Ross: Analysis of the chemical composition of the passive film on Li-ion battery anodes using attenuated total reflection infrared spectroscopy. Electrochem. Solid-State Lett. 6, A136 (2006).

    Article  CAS  Google Scholar 

  24. 24.

    M. Onuki, S. Kinoshita, Y. Sakata, M. Yanagidate, Y. Otake, and M. Ue: Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents. J. Electrochem. Soc. 155, A794 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    K. Xu, S. Zhang, B.A. Bruce, and T.R. Jow: Lithium bis(oxalate)borate stabilizes graphite anode in propylene carbonate. Electrochem. Solid-State Lett. 5, A259 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    S.K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi: Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem. Solid-State Lett. 6, A13 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    A. Xiao, L. Yang, B.L. Lucht, S.H. Kang, and D.P. Abraham: Examining the solid electrolyte interphase on binder-free graphite electrodes. J. Electrochem. Soc. 156, A318 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    A.C. Chu, J.Y. Josefowicz, and G.C. Farrington: Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy. J. Electrochem. Soc. 144, 4161 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    K.A. Hirasawa, T. Sato, H. Asahina, S. Yamaguchi, and S. Mori: In situ electrochemical atomic force microscope study on graphite electrodes. J. Electrochem. Soc. 144, L81 (1997).

    CAS  Article  Google Scholar 

  30. 30.

    R. Imhof and P. Novák: In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes. J. Electrochem. Soc. 145, 1081 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    D. Bar-Tow, E. Peled, and L. Burstein: A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J. Electrochem. Soc. 146, 824 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A.V.D Ven, V. Srinivasan, R. Kostecki, and G. Ceder: Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    S.S. Zhang: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    C. Jehoulet, P. Biensan, J.M. Bodet, M. Broussely, C. Moteau, and C. Tessier-Lescourret: in Batteries for Portable Applications and Electric Vehicles. C.F. Holmes, A.R. Landgrebe, eds., The Electrochemical Society Proceeding Series, Pennington, NJ, 1997; pp. 97–18, P974.

  35. 35.

    D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider: On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    J.O. Besenhard and H.P. Fritz: Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts. J. Electroanal. Chem. 53, 329 (1974).

    CAS  Article  Google Scholar 

  37. 37.

    J.O. Besenhard, M. Winter, J. Yang, and W. Biberacher: Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228 (1995).

    CAS  Article  Google Scholar 

  38. 38.

    M.R. Wagner, J.H. Albering, K.C. Moeller, J.O. Besenhard, and M. Winter: XRD evidence for the electrochemical formation of Li+(PC)yC-n. Electrochem. Commun 7, 947 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Y. Mizutani, T. Abe, K. Ikeda, E. Ihara, M. Asano, T. Harada, M. Inaba, and Z. Ogumi: Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2, 5-dimethyltetrahydrofuran. Carbon 35, 61 (1997).

    CAS  Article  Google Scholar 

  40. 40.

    T. Abe, N. Kawabata, Y. Mizutani, M. Inaba, and Z. Ogumi: Correlation between cointercalation of solvents and electrochemical intercalation of lithium into graphite in propylene carbonate solution. J. Electrochem. Soc. 150, A257 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    K. Xu: “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. J. Electrochem. Soc. 154, A162 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, and T.B. Curtis: Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    E. Peled, D. Bar Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky: Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J. Power Sources 97/98, 52 (2001).

    Article  Google Scholar 

  44. 44.

    D. Alliata: Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun. 2, 436 (2000).

    CAS  Article  Google Scholar 

  45. 45.

    F.P. Campana, R. Kötz, J. Vetter, P. Novák, and H. Siegenthaler: In situ atomic force microscopy study of dimensional changes during Li+ ion intercalation/deintercalation in highly oriented pyrolytic graphite. Electrochem. Commun. 7, 107 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    H. Zhang, F. Li, C. Liu, J. Tan, and H. Cheng: New insights into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    E. Peled, D. Golodnitsky, A. Ulus, and V. Yufit: Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta 50, 391 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    P. Lu and S.J. Harris: Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    A.J. Smith, J.C. Burns, S. Trussler, and J.R. Dahn: Precision measurements of the coulombic efficiency of lithium–ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    A.J. Smith, J.C. Burns, and J.R. Dahn: A high precision study of the Coulombic efficiency of Li-ion batteries. Electrochem. Solid State Lett. 13, A177 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    J.C. Burns, G. Jain, A.J. Smith, K.W. Eberman, E. Scott, J.P. Gardner, and J.R. Dahn: Evaluation of effects of additives in wound Li-ion cells through high precision Coulometry. J. Electrochem. Soc. 158, A255 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    A.J. Smith, J.C. Burns, X. Zhao, D. Xiong, and J.R. Dahn: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    M. Tang and J. Newman: Electrochemical characterization of SEI-type passivating films using redox shuttles. J. Electrochem. Soc. 158, A530 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    Y.M. Chiang, W.C. Carter, B.H. Ho, and M. Duduta: High energy density redox flow device. U.S. Patent No. 2010/0047671 A1. (Published on Feb. 25, 2010).

    Google Scholar 

  55. 55.

    M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, and Y.M. Chiang: Semisolid lithium rechargeable flow battery. Adv. Eng. Mater. 1, 511 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    S.K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi: Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions. Electrochim. Acta. 47, 1975 (2002).

    CAS  Article  Google Scholar 

  57. 57.

    S. Yanase and T. Oi: Solvation of lithium ion in organic electrolyte solutions and its isotopic reduced partition function ratios studied by ab initio molecular orbital method. J. Nucl. Sci. Technol. 39, 1060 (2002).

    CAS  Article  Google Scholar 

  58. 58.

    T. Fukushima, Y. Matsuda, H. Hashimoto, and R. Arakawa: Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectrometry. Electrochem. Solid-State Lett. 4, A127 (2001).

    CAS  Article  Google Scholar 

  59. 59.

    Y. Matsuda, T. Fukushima, H. Hashimoto, and R. Arakawa: Solvation of lithium ions in mixed organic electrolyte solutions by electrospray ionization mass spectrometry. J. Electrochem. Soc. 149, A1045 (2002).

    CAS  Article  Google Scholar 

  60. 60.

    M. Morita, Y. Asai, N. Yoshimoto, and M. Ishikawa: A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451 (1998).

    CAS  Article  Google Scholar 

  61. 61.

    O. Borodin and G. Smith: Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763 (2009).

    CAS  Article  Google Scholar 

  62. 62.

    L. Yang, A. Xiao, and B. Lucht: Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154, 131 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    A.V. Cresce and K. Xu: Preferential solvation of Li+ directs formation of interphase on graphitic anode. Electrochem. Solid-State Lett. 14, A154 (2011).

    Article  CAS  Google Scholar 

  64. 64.

    Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi: Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: Effects of solvent and surface film. Langmuir 25, 12766 (2009).

    CAS  Article  Google Scholar 

  65. 65.

    K. Xu, A.V. Cresce, and U. Lee: Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+-desolvation at electrolyte/graphite interface. Langmuir 26, 11538 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kang Xu.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, K., von Wald Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research 27, 2327–2341 (2012). https://doi.org/10.1557/jmr.2012.104

Download citation