Electronic, magnetic and dielectric properties of multiferroic MnTiO3

Abstract

The ground-state structural, electronic, magnetic, optical and dielectric properties of MnTiO3 are calculated using density functional theory within the generalized gradient approximation. The structure parameters obtained agree well with experimental results. The electronic structure results show that the G-type antiferromagnetic phase of LN-type MnTiO3 has an indirect band gap of 0.85 eV. The calculated local magnetic moment of Mn ion is 4.19 μB. The calculated Born effective charges (BECs, denoted by tensor Z*) show that the Z* of Ti and O atoms are significantly and anomalously large. Interestingly, ferroelectric spontaneous polarization of large magnitude is predicted to be along [111] direction with a magnitude of 87.95–105.22 μC/cm2. B-site Ti ions in 3 d0 state dominate ferroelectric polarization of multiferroic MnTiO3, whereas A-site Mn ions having partially filled 3 d5 orbitals are considered to contribute to its antiferromagnetic properties. Furthermore, it is predicted that multiferroic MnTiO3 shows good dielectric and optical properties.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1.
FIG. 2.
FIG. 3.
TABLE III.
TABLE IV.
TABLE V.
FIG. 4.
FIG. 5.

References

  1. 1.

    E.K.H. Salje: Phase Transitions in Ferroelectic and Coelastic Crystal (Cambridge University Press, Cambridge, UK, 1990).

    Google Scholar 

  2. 2.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722, 2003.

    CAS  Article  Google Scholar 

  3. 3.

    M. Fiebig, T.H. Lottermoser, D. Fröhlich, A.V. Goltsev, and R.V. Pisarev: Observation of coupled magnetic and electric domains. Nature 419, 818, 2002.

    CAS  Article  Google Scholar 

  4. 4.

    T. Lottermoser and M. Fiebig: Magnetoelectric behavior of domain walls in multiferroic HoMnO3. Phys. Rev. B 70, 220407, 2004.

    Article  CAS  Google Scholar 

  5. 5.

    T. Kimural, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55, 2003.

    Article  CAS  Google Scholar 

  6. 6.

    K. Taniguchi, N. Abe, S. Ohtani, and T. Arima: Magnetoelectric memory effect of the nonpolar phase with collinear spin structure in multiferroic MnWO4. Phys. Rev. Lett. 102, 147201, 2009.

    CAS  Article  Google Scholar 

  7. 7.

    J. Dho, X.D. Qi, H. Kim, J.L. MacManus-Driscol, and M.G. Blamire: Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18, 1445, 2006.

    CAS  Article  Google Scholar 

  8. 8.

    Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, H.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, and R. Ramesh: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478, 2008.

    CAS  Article  Google Scholar 

  9. 9.

    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. ErikssonPhys: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412, 2006.

    Article  CAS  Google Scholar 

  10. 10.

    N.A. Hill: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694, 2000.

    CAS  Article  Google Scholar 

  11. 11.

    R. Seshadri and N.A. Hill: Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892, 2001.

    CAS  Article  Google Scholar 

  12. 12.

    N. Lampis, C. Franchini, G. Satta, A. Geddo-Lehmann, and S. Massidda: Electronic structure of PbFe1/2Ta1/2O3: Crystallographic ordering and magnetic properties. Phys. Rev. B 69, 064412, 2004.

    Article  CAS  Google Scholar 

  13. 13.

    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, and K.M. Rabe: First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113, 2005.

    Article  CAS  Google Scholar 

  14. 14.

    B.B. Van Aken, T.T.M. Palstra, A. Filippetti, and N.A. Spaldin: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164, 2004.

    Article  CAS  Google Scholar 

  15. 15.

    M.Q. Cai, J.C. Liu, G.W. Yang, Y.L. Cao, X. Tan, X.Y. Chen, Y.G. Wang, L.L. Wang, and W.Y. Hu: First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J. Chem. Phys. 126, 154708, 2007.

    Article  CAS  Google Scholar 

  16. 16.

    C.J. Fennie: Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203, 2008.

    Article  CAS  Google Scholar 

  17. 17.

    T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C.J. Fennie, S.K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, and J.F. Mitchell: Coexistence of weak ferromagnetism and ferroelectricity in the high-pressure LiNbO3-type phase of FeTiO3. Phys. Rev. Lett. 103, 047601, 2009.

    CAS  Article  Google Scholar 

  18. 18.

    A. Aimi, T. Katsumata, D. Mori, D. Fu, M. Itoh, T. Kyômen, K. Hiraki, T. Takahashi, and Y. Inaguma: High-pressure synthesis and correlation between structure, magnetic, and dielectric properties in LiNbO3-type MnMO3 (M = Ti, Sn). Inorg. Chem. 50, 6392, 2011.

    CAS  Article  Google Scholar 

  19. 19.

    J.Y. Son, G. Lee, M. Jo, H. Kim, H.M. Jang, and Y. Shin: Heteroepitaxial ferroelectric ZnSnO3 thin film. J. Am. Chem. Soc. 131, 8386, 2009.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Inaguma, M. Yoshida, and T. Katsumata: A polar oxide ZnSnO3 with a LiNbO3-type structure. J. Am. Chem. Soc. 130, 6704, 2008.

    CAS  Article  Google Scholar 

  21. 21.

    P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, B864, 1964.

    Article  Google Scholar 

  22. 22.

    W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133, 1965.

    Article  Google Scholar 

  23. 23.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865, 1996.

    CAS  Article  Google Scholar 

  24. 24.

    G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558, 1993.

    CAS  Article  Google Scholar 

  25. 25.

    G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169, 1996.

    CAS  Article  Google Scholar 

  26. 26.

    P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953, 1994.

    Article  Google Scholar 

  27. 27.

    H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188, 1976.

    Article  Google Scholar 

  28. 28.

    M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112, 2006.

    Article  CAS  Google Scholar 

  29. 29.

    J. Ko and C.T. Prewitt: High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure. Phys. Chem. Miner. 15, 355, 1988.

    CAS  Article  Google Scholar 

  30. 30.

    P.B. Fabritchnyi, M.V. Korolenko, M.I. Afanasov, M. Danot, and E. Janod: Mössbauer characterization of tin dopant ions in the antiferromagnetic ilmenite MnTiO3. Solid State Commun. 125, 341, 2003.

    CAS  Article  Google Scholar 

  31. 31.

    N. Mufti, G.R. Blake, M. Mostovoy, S. Riyadi, A.A. Nugroho, and T.T.M. Palstra: Magnetoelectric coupling in MnTiO3. Phys. Rev. B 83, 104416, 2011.

    Article  CAS  Google Scholar 

  32. 32.

    F.D. Murnaghan: Finite deformations of an elastic solid. Am. J. Math. 49, 235, 1937.

    Article  Google Scholar 

  33. 33.

    E.C. Stoner: Collective Electron Ferromagnetism. Proc. R. Soc. London, Ser. A 165, 372, 1938.

    Article  Google Scholar 

  34. 34.

    N.L. Ross, J. Ko, and C.T. Prewitt: A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys. Chem. Miner. 16, 621, 1989.

    CAS  Google Scholar 

  35. 35.

    H. Wang, Y. Zheng, M.Q. Cai, H.T. Huang, and H.L.W. Chan: First-principles study on the electronic and optical properties of BiFeO3. Solid State Commun. 149, 641, 2009.

    CAS  Article  Google Scholar 

  36. 36.

    M. Veithen and PH. Ghosez: First-principles study of the dielectric and dynamical properties of lithium niobate. Phys. Rev. B 65, 214302, 2002.

    Article  CAS  Google Scholar 

  37. 37.

    M. Nakayama, M. Nogami, M. Yoshida, T. Katsumata, and Y. Inaguma: First-principles studies on novel polar oxide ZnSnO3: Pressure-induced phase transition and electric properties. Adv. Mater. 22, 2579, 2010.

    CAS  Article  Google Scholar 

  38. 38.

    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi: Phonons and related crystal properties from density functional perturbation theory. Rev. Mod. Phys. 73, 515, 2001.

    CAS  Article  Google Scholar 

  39. 39.

    A. Roy, R. Prasad, S. Auluck, and A. Garg: First-principles calculations of born effective charges and spontaneous polarization of ferroelectric bismuth titanate. J. Phys. Condens. Matter 22, 165902, 2010.

    Article  CAS  Google Scholar 

  40. 40.

    H. Wang, H.T. Huang, and B. Wang: First-principles study of structural, electronic, and optical properties of ZnSnO3. Solid State Commun. 149, 1849, 2009.

    CAS  Article  Google Scholar 

  41. 41.

    M. Xu, S.Y. Wang, G. Yin, J. Li, Y.X. Zheng, L.Y. Chen, and Y. Jia: Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4. Appl. Phys. Lett. 89, 151908, 2006.

    Article  CAS  Google Scholar 

  42. 42.

    Y. Syono, S. Akimoto, Y. Ishikawa, and Y. Endoh: A new high-pressure phase of MnTiO3 and its magnetic property. J. Phys. Chem. Solids 30, 1665, 1969.

    CAS  Article  Google Scholar 

  43. 43.

    X. Wu, S. Qin, and L. Dubrovinsky: Structural characterization of the FeTiO3–MnTiO3 solid solution. J. Solid State Chem. 183, 2483, 2010.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hong Kong Polytechnic University (Project: A-PK26) and the National Science Foundation of China (No. 10902029).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deng, X., Lu, W., Wang, H. et al. Electronic, magnetic and dielectric properties of multiferroic MnTiO3. Journal of Materials Research 27, 1421–1429 (2012). https://doi.org/10.1557/jmr.2012.101

Download citation