Single step aerosol synthesis of nanocomposites by aerosol routes: γ-Fe2O3/SiO2 and their functionalization

Abstract

A single step gas phase method was developed to synthesize silica-coated iron oxide nanocomposite materials in a furnace aerosol reactor (FuAR) using premixed precursors. Synthesis of single component silica and magnetic iron oxide was studied to understand the decomposition mechanism of the precursors, identify the product crystal phase, and optimize the viable operating conditions for the controlled synthesis of nanocomposite material with desirable crystal phase, size, and morphology. The single component decomposition results are further extended to synthesize silica-coated magnetic iron oxide nanocomposite material using premixed precursor. A mechanism was proposed to explain the formation of SiO2-coated γ-Fe2O3 nanocomposite in a single step in a FuAR based on chemical kinetics and was verified by supporting characterization results. The synthesized magnetic γ-Fe2O3/SiO2 nanocomposite material was further tested for suspension stability, magnetic properties, and surface reactivity and was compared with uncoated γ-Fe2O3 nanoparticles to demonstrate improved surface properties.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

REFERENCES

  1. 1.

    F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, and M.Y. Gao: Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 18, 2553 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    N.S. Yu, X.P. Hao, X.G. Xu, and M.H. Jiang: Synthesis and optical absorption investigation on Gap/Gan core/shell nanocomposite materials. Mater. Lett. 61, 523 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    A.A. Athawale and S.V. Bhagwat: Synthesis and characterization of novel copper/polyaniline nanocomposite and application as a catalyst in the Wacker oxidation reaction. J. Appl. Polym. Sci. 89, 2412 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    A.K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, and P. Gomez-Romero: Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 15, 1125 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    E. Thimsen, N. Rastgar, and P. Biswas: Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. J. Phys. Chem. C 112, 4134 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng., R 54, 121 (2006).

    Article  Google Scholar 

  7. 7.

    S. Basak, D.R. Chen, and P. Biswas: Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law. Chem. Eng. Sci. 62, 1263 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    C. Cannas, G. Concas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio: How to tailor maghemite particle size in gamma-Fe2O3-SiO2 nanocomposites. J. Mater. Chem. 12, 3141 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    A. Bourlinos, A. Simopoulos, D. Petridis, H. Okumura, and G. Hadjipanayis: Silica-maghemite nanocomposites. Adv. Mater. 13, 289 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    P. Tartaj, T. Gonzalez-Carreno, and C.J. Serna: Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv. Mater. 13, 1620 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    B.K. McMillin, P. Biswas, and M.R. Zachariah: In situ characterization of vapor phase growth of iron oxide-silica nanocomposites. 1. 2-D planar laser-induced fluorescence and Mie imaging. J. Mater. Res. 11, 1552 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    H. Ai, C. Flask, B. Weinberg, X. Shuai, M.D. Pagel, D. Farrell, J. Duerk, and J.M. Gao: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater. 17, 1949 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    J. Qin, S. Laurent, Y.S. Jo, A. Roch, M. Mikhaylova, Z.M. Bhujwalla, R.N. Muller, and M. Muhammed: A high-performance magnetic resonance imaging T-2 contrast agent. Adv. Mater. 19, 1874 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    P.X. Zhi, H.Z. Qing, Q.L. Gao, and B.Y. Ai: Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61, 1027 (2006).

    Article  Google Scholar 

  15. 15.

    S.K. Pulfer, S.L. Ciccotto, and J.M. Gallo: Distribution of small magnetic particles in brain tumor-bearing rats. J. Neurooncol. 41, 99 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    S. Dutz, R. Hergt, J. Murbe, J. Topfer, R. Muller, M. Zeisberger, W. Andra, and M.E. Bellemann: Magnetic nanoparticles for biomedical heating applications. J. Res. Phys. Chem. Chem. Phys. 220, 145 (2006).

    CAS  Google Scholar 

  17. 17.

    U. Gaur, S.K. Sahoo, T.K. De, P.C. Ghosh, A. Maitra, and P.K. Ghosh: Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm. 202, 1 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    A.K. Gupta and M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Y.K. Sun, L. Duan, Z.R. Guo, D.M. Yun, M. Ma, L. Xu, Y. Zhang, and N. Gu: An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J. Magn. Magn. Mater. 285, 65 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    S. Achilefu, S. Bloch, M.A. Markiewicz, T.X. Zhong, Y.P. Ye, R.B. Dorshow, B. Chance, and K.X. Liang: Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc. Natl. Acad. Sci. U.S.A. 102, 7976 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    N. Kohler, G.E. Fryxell, and M.Q. Zhang: A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J. Am. Chem. Soc. 126, 7206 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    D.R. Powers: Kinetics of SiCl4 oxidation. J. Am. Ceram. Soc. 61, 295 (1978).

    CAS  Article  Google Scholar 

  23. 23.

    P. Biswas, C.Y. Wu, M.R. Zachariah, and B. McMillin: Characterization of iron oxide-silica nanocomposites in flames: Part II. Comparison of discrete-sectional model predictions to experimental data. J. Mater. Res. 12, 714 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    M.N.A. Karlsson, K. Deppert, B.A. Wacaser, L.S. Karlsson, and J.O. Malm: Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl. Phys. A 80, 1579 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    K.S. Rane, V.M.S. Verenkar, R.M. Pednekar, and P.Y. Sawant: Hydrazine method of synthesis of gamma-Fe2O3 useful in ferrites preparation. Part III—Study of hydrogen iron oxide phase in gamma-Fe2O3. J. Mater. Sci.- Mater. Electron. 10, 121 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga, and S. Solinas: IR and NMR study of nanoparticle-support interactions in a Fe2O3-SiO2 nanocomposite prepared by a sol-gel method. Nanostruct. Mater. 11, 573 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    U. Kunzelmann, H.J. Jacobasch, and G. Reinhard: Investigations of the influence of vapor-phase inhibitors on the surface-charge of iron-oxide particles by zeta-potential measurements. Mater. Corros. 40, 723 (1989).

    Article  Google Scholar 

  28. 28.

    J. Kim and D.F. Lawler: Characteristics of zeta potential distribution in silica particles. Bull. Korean Chem. Soc. 26, 1083 (2005).

    Article  Google Scholar 

  29. 29.

    C. Cannas, M.F. Casula, G. Concas, A. Corrias, D. Gatteschi, A. Falqui, A. Musinu, C. Sangregorio, and G. Spano: Magnetic properties of gamma-Fe2O3-SiO2 aerogel and xerogel nanocomposite materials. J. Mater. Chem. 11, 3180 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    C. Cannas, G. Concas, D. Gatteschi, A. Falqui, A. Musinu, G. Piccaluga, C. Sangregorio, and G. Spano: Superparamagnetic behaviour of gamma-Fe2O3 nanoparticles dispersed in a silica matrix. Phys. Chem. Chem. Phys. 3, 832 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    K.S. Suslick, M.M. Fang, and T. Hyeon: Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960 (1996).

    CAS  Article  Google Scholar 

  32. 32.

    S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan: Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol. 35, 479 (2000).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Department of Defense (DoD-MURI FA9550-04-1-0430) and the Center of Materials Innovation at Washington University in St. Louis for partial support for this work. Partial funding by the McDonnell Academy Global Energy and Environmental Partnership (mageep.wustl.edu) and the Indo-US Science and Technology Forum is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soubir Basak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Basak, S., Tiwari, V., Fan, J. et al. Single step aerosol synthesis of nanocomposites by aerosol routes: γ-Fe2O3/SiO2 and their functionalization. Journal of Materials Research 26, 1225–1233 (2011). https://doi.org/10.1557/jmr.2011.97

Download citation