Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores


The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the interior of the nanopore, leading to precipitation of a metal oxide or hydroxide phase. The crystalline and semiconducting ZnO phase formed directly above 60 °C at sufficiently high pH and led to the formation of dense nanowires with preferential (0001) orientation. The morphology of the wire could be influenced by the deposition temperature. Axially segmented gold–ZnO and silver–ZnO nanowires were made. In contrast, the iron hydroxide phase deposited inside the pore as a permeable gel that collapsed and transformed into hollow FeO(OH) tubes during drying. The as-formed nanotubes were amorphous and could be filled with nickel in a subsequent electrodeposition step, yielding core-shell nickel iron-oxohydroxide nanowires. The cathodic efficiency of nitrate reduction was low in both cases, suggesting that diffusional supply of metal ions may be the rate-determining step.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.


  1. 1.

    C.M. Lieber and Z.L. Wang: Functional nanowires. MRS Bull. 32, 99 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, and J.R. LaRoche: ZnO nanowire growth and devices. Mater. Sci. Eng., R 47, 1 (2004).

    Article  Google Scholar 

  3. 3.

    R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang: DNA translocation in inorganic nanotubes. Nano Lett. 5, 1633 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    F. Patolsky, G. Zheng, and C.M. Lieber: Nanowire-based biosensors. Anal. Chem. 78, 4260 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    G. Shen, P.-C. Chen, K. Ryu, and C. Zhou: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    C.D. Keating and M.J. Natan: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    L.A. Bauer, D.H. Reich, and G.J. Meyer: Selective functionalization of two-component magnetic nanowires. Langmuir 19, 7043 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    J. Wang: Barcoded metal nanowires. J. Mater. Chem. 18, 4017 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Wang, R.H. Hernandez, D.J. Bartlett Jr., J.M. Bingham, T.R. Kline, A. Sen, and T.E. Mallouk: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    W.F. Paxton, S. Sundarajam, T.E. Mallouk, and A. Sen: Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    J. Wang: Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    J. Chen and F. Cheng: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    R.S. Wagner and W.C. Ellis: Vapor-liquid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  14. 14.

    A.M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    C.R. Martin: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Li, G.W. Meng, L.D. Zhang, and F. Phillipp: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    M.J. Zheng, L.D. Zhang, G.H. Li, and W.Z. Shen: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363, 123 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    J.B. Cui and U.J. Gibson: Electrodeposition and room temperature ferromagnetic anisotropy of Co- and Ni-doped ZnO nanowire arrays. Appl. Phys. Lett. 87, 133108 (2005).

    Article  Google Scholar 

  19. 19.

    Y. Leprince-Wang, A. Yacoubi-Ouslim, and G.Y. Wang: Structure study of electrodeposited ZnO nanowires. Microelectron. J. 36, 625 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    M. Lai and D.J. Riley: Templated electrosynthesis of zinc oxide nanorods. Chem. Mater. 18, 2233 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Leprince-Wang, G.Y. Wang, X.Z. Zhang, and D.P. Yu: Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J. Cryst. Growth 287, 89 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile, and J.P. Ansermet: ZnO:Mn:Cu nanowires prepared by template method. Phys. Status Solidi B 244, 1522 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    D. Ramirez, T. Pauporte, H. Gomez, and D. Lincot: Electrochemical growth of ZnO nanowires inside nanoporous alumina templates. A comparison with metallic Zn nanowires growth. Phys. Status Solidi A 205, 2371 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    S. Chou, F. Cheng, and J. Chen: Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur. J. Inorg. Chem. 4035 (2005).

    Google Scholar 

  25. 25.

    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2(7), 717 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    H. Bort, K. Jüttner, W.J. Lorenz, G. Staitkov, and E. Budevski: Underpotential-overpotential transition phenomena in metal-deposition processes. Electrochim. Acta 28, 985 (1983).

    CAS  Article  Google Scholar 

  27. 27.

    S. Cherevko, J. Fu, N. Kulyk, S.M. Cho, S. Haam, and C.-H. Chung: Electrodeposition of palladium nanotube and nanowire arrays. J. Nanosci. Nanotechnol. 9, 3154 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    R. Tena-Zaera, J. Elias, C. Lévy-Clément, I. Mora-Seró, Y. Luo, and J. Bisquert: Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Phys. Status Solidi A 205, 2345 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, and Y. Ito: Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 599, 149 (2003).

    Article  Google Scholar 

  30. 30.

    M. Motoyama, Y. Fukunaka, T. Sakka, and Y.H. Ogata: Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta 53, 205 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    M.G. Maas, E.J.B Rodijk, W. Maijenburg, J.E. ten Elshof, and D.H.A Blank: Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool’ in Multifunction at the Nanoscale through Nanowires, edited by K. Nielsch, A. Fontcuberta i Morral, J.K. Holt, and C.V. Thompson (Mater. Res. Soc. Symp. Volume 1206E, Warrendale, PA, 2010), 1206-M01–08.

  32. 32.

    M. Gupta, D. Pinisetty, J.C. Flake, and J.J. Spivey: Pulse electrodeposition of Cu–ZnO and Mn–Cu–ZnO nanowires. J. Electrochem. Soc. 157, D473 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    S. Gota, J.-B. Moussy, M. Henriot, M.-J. Guittet, and M. Gautier-Soyer: Atomic-oxygen-assisted MBE growth of Fe3O4 (111) on α-Al2O3 (0001). Surf. Sci. 482–, 809 (2001).

    Article  Google Scholar 

Download references


Financial support from the Dutch Ministry of Economic Affairs in the framework of the NanoNed program is acknowledged.

Author information



Corresponding author

Correspondence to Johan E. ten Elshof.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maas, M.G., Rodijk, E.J.B., Wouter Maijenburg, A. et al. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores. Journal of Materials Research 26, 2261–2267 (2011). https://doi.org/10.1557/jmr.2011.93

Download citation