Skip to main content

Advertisement

Log in

Performance optimization of a thermoelectric generator element with linear, spatial material profiles in a one-dimensional setup

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graded and segmented thermoelectric elements are studied in order to improve the performance of thermogenerators that are exposed to a large temperature difference. The linear thermodynamics of irreversible processes is extended by assuming spatially dependent material parameters like the Seebeck coefficient, the electrical and thermal conductivities. For the particular case in which these transport coefficients exhibit a constant gradient, we present an analytical solution of the one-dimensional thermal energy balance in terms of Bessel functions. Given linear spatial material profiles, we discuss the optimization of performance parameters like the electrical power Pel and the efficiency η of a graded thermogenerator element of fixed length and fixed boundary temperatures. The results are compared with the constant properties model, i.e., physically and chemically homogeneous material, as a suitable reference for performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
TABLE III.
FIG. 3.
TABLE IV.

Similar content being viewed by others

REFERENCES

  1. K. Behnia, D. Jaccard, and J. Flouquet: On the thermoelectricity of correlated electrons in the zero-temperature limit. J. Phys. Condens. Matter 16, 5187 (2004).

    Article  CAS  Google Scholar 

  2. K. Behnia: The Nernst effect and the boundaries of the Fermi liquid picture. J. Phys. Condens. Matter 21, 113101 (2009).

    Article  CAS  Google Scholar 

  3. A.A. Kovalev and Y. Tserkovnyak: Thermoelectric spin transfer in textured magnets. Phys. Rev. B 80, 100408 (2009).

    Article  CAS  Google Scholar 

  4. L. Zhu, R. Ma, L. Sheng, M. Liu, and D.-N. Sheng: Universal thermoelectric effect of dirac fermions in graphene. Phys. Rev. Lett. 104, 076804 (2010).

    Article  CAS  Google Scholar 

  5. V.L. Kuznetsov: Functionally graded materials for thermoelectric applications, in CRC Handbook of Thermoelectrics: Macro to Nano (Taylor & Francis, Boca Raton, FL, 2006; chap. 28).

    Google Scholar 

  6. E. Müller, K. Zabrocki, C. Goupil, G.J. Snyder, and W. Seifert: Functionally graded thermoelectric generator and cooler elements. in CRC Handbook of Thermoelectrics: Thermoelectrics and Its Energy Harvesting (D.M. Rowe, ed., RC, Boca Raton, FL, 2011).

    Google Scholar 

  7. E. Altenkirch: Über den Nutzeffekt der Thermosäulen. Phys. Z. 10, 560–580, (1909).

    CAS  Google Scholar 

  8. E. Altenkirch: Elektrothermische Kälteerzeugung und reversible elektrische Heizung. Phys. Z. 12, 920–924 (1911).

    Google Scholar 

  9. A.F. Ioffe: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, Ltd., London, 1957).

    Google Scholar 

  10. M. Jonson and G.D. Mahan: Mott’s formula for the thermopower and the Wiedemann–Franz law. Phys. Rev. B 21, 4223–4229 (1980).

    Article  CAS  Google Scholar 

  11. G. Wiedemann and R. Franz: Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 89, 497–531 (1953).

    Google Scholar 

  12. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College, Philadelphia, PA, 1976).

    Google Scholar 

  13. M. Telkes: Westinghouse Research Report R-94264-B (1938).

  14. C. Wood: Materials for thermoelectric energy conversion. Reports Progr. Phys. 51, 459–539 (1988).

    Article  CAS  Google Scholar 

  15. M. Telkes: The efficiency of thermoelectric generators. I. J. Appl. Phys. 18, 1116–1127 (1947).

    Article  CAS  Google Scholar 

  16. M. Telkes: Solar thermoelectric generators. J. Appl. Phys. 25, 765–777 (1954).

    Article  CAS  Google Scholar 

  17. M. Telkes: Power output of thermoelectric generators. J. Appl. Phys. 25, 1058–1059 (1954).

    Article  Google Scholar 

  18. L. Onsager: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  19. L. Onsager: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931).

    Article  CAS  Google Scholar 

  20. H.J. Goldsmid and R.W. Douglas: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).

    Article  Google Scholar 

  21. D.M. Rowe, ed.: CRC Handbook of Thermoelectrics (RC, Boca Raton, FL, 1995).

  22. D.M. Rowe, ed.: CRC Handbook of Thermoelectrics: Macro to Nano. (RC, Boca Raton, FL, 2006).

  23. S.D. Riffat and X.I. Ma: Irreversible thermodynamics of thermoelectricity. Appl. Therm. Eng. 23, 913–935 (2003).

    Article  Google Scholar 

  24. C.B. Vining: An inconvenient truth about thermoelectrics. Nature Mater. 8, 83–85 (2009).

    Article  CAS  Google Scholar 

  25. I. Shiota and Y. Miyamoto, ed.: Functionally graded material 1996, in Proceedings of the 4th International Symposium on Functionally Graded Materials (Elsevier, New York, 1996).

  26. T.M. Tritt, ed.: Recent Trends in Thermoelectric Materials Research III. Vol 71: Semiconductors and Semimetals (Academic Press, San Diego, CA, 2001).

  27. C.A. Domenicali: Irreversible thermodynamics of thermoelectric effects in inhomogeneous, anisotropic media. Phys. Rev. 92, 877–881 (1953).

    Article  CAS  Google Scholar 

  28. C.A. Domenicali: Irreversible thermodynamics of thermoelectricity. Rev. Mod. Phys. 26, 237–275 (1954).

    Article  Google Scholar 

  29. A.E. Kaliazin, V.L. Kuznetsov, and D.M. Rowe: Rigorous calculations related to functionally graded and segmented thermoelements. In Proceedings ICT 2001. Twentieth International Conference on Thermoelectrics (IEEE, 2001; pp. 286–292).

  30. J.H. Lienhard IV and J.H. Lienhard V: A Heat Transfer Textbook (3rd ed.; Phlogiston Press, Cambridge, MA, 2008).

    Google Scholar 

  31. J. Schilz, E. Müller, L. Helmers, Y.S. Kang, Y. Noda, and M. Niino: On the composition function of graded thermoelectric materials. Mater. Sci. Forum 308, 647–652 (1999).

    Article  Google Scholar 

  32. P.H. Egli: Thermoelectricity (John Wiley & Sons, Inc., New York, 1960).

    Google Scholar 

  33. D.K.C. MacDonald: Thermoelectricity: An Introduction to the Principles (Dover Publications, Inc., New York, 2006).

    Google Scholar 

  34. L.J. Ybarrondo: Effects of surface heat transfer and spatial property dependence on the optimum performance of a thermoelectric heat pump. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 1964).

    Google Scholar 

  35. L.J. Ybarrondo and J.E. Sunderland: Influence of spatially dependent properties on the performance of a thermoelectric heat pump. Adv. Energy Convers. 5, 383–405 (1965).

    Article  Google Scholar 

  36. E. Müller, S. Walczak, W. Seifert, C. Stiewe, and G. Karpinski: Numerical performance estimation of segmented thermoelectric elements. In ICT 2005—24th International. Conference. on Thermoelectrics (T.M. Tritt, ed.; Institute of Electrical and Electronics Engineers, Inc., New York, 2005; pp. 352–357).

  37. W. Seifert, E. Müller, and S. Walczak: Generalized analytic description of one dimensional non-homogeneous TE cooler and generator elements based on the compatibility approach. In 25th International Conference on Thermoelectrics (P. Rogl, ed.; IEEE, Piscataway, NJ, 2006; pp. 714–719).

  38. E. Müller, G. Karpinski, L.M. Wu, S. Walczak, and W. Seifert: Separated effect of 1d thermoelectric material gradients. In 25th International Conference on Thermoelectrics (P. Rogl, ed.; IEEE, Piscataway, NJ, 2006; pp. 201–209).

  39. Z. Bian and A. Shakouri: Beating the maximum cooling limit with graded thermoelectric materials. Appl. Phys. Lett. 89, 212101 (2006).

    Article  CAS  Google Scholar 

  40. Z. Bian, H. Wang, Q. Zhou, and A. Shakouri: Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials. Phys. Rev. B Condens. Matter Mater. Phys. 75, 245208 (2007).

    Article  CAS  Google Scholar 

  41. G.J. Snyder: Thermoelectric power generation: Efficiency and compatibility. In CRC Handbook of Thermoelectrics: Macro to Nano (D.M. Rowe, ed.; Taylor & Francis, Boca Raton, FL, 2006; chap. 9).

    Google Scholar 

  42. W. Seifert, E. Müller, G.J. Snyder, and S. Walczak: Compatibility factor for the power output of a thermogenerator. Phys. Status Solids: 1, 250–252 (2007).

    Article  CAS  Google Scholar 

  43. O.S. Gryaznov, B.Y.A. Moizhes, and V.A. Nemchinskii: Generalized thermoelectric efficiency. Soviet Phys. Techn. Phys. 23, 975–980 (1978).

    Google Scholar 

  44. S. de Groot and P. Mazur: Non-Equilibrium Thermodynamics (Dover, London, 1984).

    Google Scholar 

  45. C.A. Domenicali: Stationary temperature distribution in an electrically heated conductor. J. Appl. Phys. 25, 1310–1311 (1954).

    Article  CAS  Google Scholar 

  46. G.D. Mahan: Density variations in thermoelectrics. J. Appl. Phys. 87, 7326–7332 (2000).

    Article  CAS  Google Scholar 

  47. L. Onsager: Theories and problems of liquid diffusion. Annals. NY Acad. Sci. 46, 241–265 (1945).

    Article  CAS  Google Scholar 

  48. S.R. de Groot: Thermodynamics of Irreversible Processes (North-Holland Publishing Company, Amstemdam, 1963).

    Google Scholar 

  49. H.B. Callen: On the theory of irreversible processes. Ph.D. Thesis, MIT, Cambridge, MA, 1947.

    Google Scholar 

  50. H.B. Callen: The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349–1358 (1948).

    Article  CAS  Google Scholar 

  51. W. Seifert, M. Ueltzen, and E. Müller: One-dimensional modelling of thermoelectric cooling. Phys. Status Solidi A 1(194), 277–290 (2002).

    Article  Google Scholar 

  52. G.D. Mahan: Inhomogeneous thermoelectrics. J. Appl. Phys. 70, 4551–4554 (1991).

    Article  CAS  Google Scholar 

  53. T.C. Harman and J.M. Honig: Thermoelectric and Thermomagnetic Effects and Applications (McGraw–Hill Book Company, New York, 1967).

    Google Scholar 

  54. R.J. Buist: The extrinsic Thomson effect. In Proceedings of the 14th International Conference on Thermoelectrics, edited by M.V. Vedernikov (A.F. Ioffe Physical-Technical Institute, St. Petersburg, Russia, 1995; pp. 301–304).

  55. W. Seifert, E. Müller, and S. Walczak: Local optimization strategy based on first principles of thermoelectrics. Phys. Status Solidi A 205(12), 2908–2918 (2008).

    Article  CAS  Google Scholar 

  56. M. Abramowitz and I.A. Stegun, ed.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed. (Dover Publications, Inc., New York, 1972).

    Google Scholar 

  57. N.N. Lebedev and R.A. Silverman: Special Functions and Their Applications (Dover Publications, Inc., New York, 1972).

    Google Scholar 

  58. O.J. Farrell and B. Ross: Solved Problems in Analysis: As Applied to Gamma, Beta, Legendre and Bessel Functions (Dover Publications, Inc., New York, 1971).

    Google Scholar 

  59. F. Bowman: Introduction to Bessel Functions (Dover Publications, Inc., New York, 1958).

    Google Scholar 

  60. G.B. Mathews and E. Meissel: A Treatise on Bessel Functions and Their Applications to Physics (BiblioBazaar, LLC, Charleston, SC, 2008).

    Google Scholar 

  61. R. Ure and R. Heikes: The figure of merit of a thermoelectric generator. Adv. Energy Convers. 2, 177 (1962).

    Article  CAS  Google Scholar 

  62. L. Helmers, E. Müller, J. Schilz, and W.A. Kaysser: Graded and stacked thermoelectric generators—Numerical description and maximisation of output power. Mater. Sci. Eng. B 56, 60–68 (1998).

    Article  Google Scholar 

  63. T.S. Ursell and G.J. Snyder: Compatibility of segmented thermoelectric generators. In Twenty-First International Conference on Thermoelectrics, edited by Thierry Caillat/G. Jeffrey Snyder (IEEE, 2002; pp. 412–417).

  64. G.J. Snyder: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004).

    Article  CAS  Google Scholar 

  65. W. Seifert, K. Zabrocki, G.J. Snyder, and E. Müller: Power-related compatibility and maximum electrical power output of a thermogenerator. Phys. Status. Solidi A 207, 2399–2406 (2010).

    Article  CAS  Google Scholar 

  66. B.Y.A. Moizhes: The influence of the temperature dependence of physical parameters on the efficiency of thermoelectric generators and refrigerators. Sov. Phys. Solid State 2, 728–737 (1960).

    Google Scholar 

  67. J.M. Borrego: Carrier concentration optimization in semiconductor thermoelements. IEEE Trans. Electron Devices 10, 364–370 (1963).

    Article  Google Scholar 

  68. J.M. Borrego: Approximate analysis of the operation of thermoelectric generators with temperature dependent parameters. IEEE Trans. Aerospace 2, 4–9 (1964).

    Article  Google Scholar 

  69. A.A. Efremov and A.S. Pushkars: Energy calculation of thermoelements with arbitrary temperature dependence of thermoelectric properties of materials by heat balance technique. Energy Convers. 11, 101–104 (1971).

    Article  Google Scholar 

  70. A. Muto, D. Kraemer, Q. Hao, Z.F. Ren, and G. Chen: Thermoelectric properties and efficiency measurements under large temperature differences. Rev. Sci. Instrum. 80, 093901 (2009).

    Article  CAS  Google Scholar 

  71. K. Zabrocki, E. Müller, and W. Seifert: One-dimensional modeling of thermogenerator elements with linear material profiles. J. Electron. Mater. 39, 1724–1729 (2010).

    Article  CAS  Google Scholar 

  72. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe: High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002).

    Article  CAS  Google Scholar 

  73. V.L. Kuznetsov and P.P. Edwards: Functional materials for sustainable energy technologies: Four case studies. ChemSus Chem 3, 44–58 (2010).

    Article  CAS  Google Scholar 

  74. Z. Dashevsky, S. Shusterman, M.P. Dariel, and I. Drabkin: Thermoelectric efficiency in graded indium-doped PbTe crystals. J. Appl. Phys. 92, 1425–1430 (2002).

    Article  CAS  Google Scholar 

  75. Z. Dashevsky, Y. Gelbstein, I. Edry, I. Drabkin, and M.P. Dariel: Optimization of thermoelectric efficiency in graded materials. In Proceedings of the 22nd International Conference on Thermoelectrics, edited by H. Scherrer and J.-C. Tedenac (IEEE, 2003; pp. 421–424).

  76. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel. High performance n-type PbTe-based materials for thermoelectric applications. Phys. B Condens. Matter 363(1–4), 196–205 (2005).

    Article  CAS  Google Scholar 

  77. E. Müller, Č. Drašar, J. Schilz, and W.A. Kaysser: Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A 362, 17–39 (2003).

    Article  CAS  Google Scholar 

  78. P. Ziolkowski, G. Karpinski, D. Platzek, C. Stiewe, and E. Müller: Application overview of the potential Seebeck microscope. In 25th International Conference of Thermoelectrics 06 (P. Rogl, ed.; 2006; pp. 684–688).

  79. D. Platzek, G. Karpinski, C. Drasar, and E. Müller: Seebeck scanning microprobe for thermoelectric FGM. Mater. Sci. Forum 492, 587–592 (2005).

    Article  Google Scholar 

  80. B. Sherman, R.R. Heikes, and R.W. Ure Jr.: Calculation of efficiency of thermoelectric devices. J. Appl. Phys. 31, 1–16 (1960).

    Article  Google Scholar 

  81. B. Sherman, R.R. Heikes, and R.W. Ure Jr.: Calculation of efficiency of thermoelectric devices. In Thermoelectric Materials and Devices (Materials Technology Series, I.B. Cadoff and E. Miller, ed.; Reinhold Publishing Cooperation, New York, 1960; pp. 199–226).

    Google Scholar 

  82. L.I. Anatychuk, O.J. Luste, and L.N. Vikhor: Optimal functions as an effective method for thermoelectric devices design. In Fifteenth International Conference on Thermoelectrics, edited by J.-P. Fleurial (IEEE, 1996; pp. 223–226).

  83. L.I. Anatychuk and L.N. Vikhor: Functionally graded materials and new prospects for thermoelectricity use. In Proceedings ICT’ 97. Sixteenth International Conference on Thermoelectrics, edited by Armin Heinrich Joachim Schumann (IEEE, 1997; pp. 588–591).

  84. T.P. Hogan and T. Shih: Modeling and characterization of power generation modules based on bulk materials. In CRC Handbook of Thermoelectrics: Macro to Nano (D.M. Rowe, ed.; Taylor & Francis, Boca Raton, FL, 2006; chap. 12).

    Google Scholar 

  85. M.H. Norwood: A comparison of theory and experiment for a thermoelectric cooler. J. Appl. Phys. 32, 2559–2563 (1961).

    Article  CAS  Google Scholar 

  86. M. Power and R.A. Handelsman: Generalized calculation of thermoelectric efficiency. Adv. Energy Convers. 1, 45–60 (1961).

    Article  CAS  Google Scholar 

  87. M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen: Numerical modeling of thermoelectric generators with varying material properties in a circuit simulator. IEEE Trans. Energy Convers. 24, 112–124 (2009).

    Article  CAS  Google Scholar 

  88. D.M. Rowe and G. Min: Evaluation of thermoelectric modules for power generation. J. Power Sources 73, 193–198 (1998).

    Article  CAS  Google Scholar 

  89. A. Jacquot, M. Jägle, J. König, D.G. Ebling, and H. Böttner: Theoretical study of the Harman method for evaluating the thermoelectric performance of materials and components at high temperature. In Proceedings of the 5th European Conference on Thermoelectrics (2007).

  90. M. Jägle: Simulating thermoelectric effects with finite element analysis using COMSOL. In Proceedings of the 5th European Conference on Thermoelectrics (2007).

  91. A. López, F. Villasevil, G. Noriega, and D. Platzek: Thermoelectric integrated numerical modeling process of a temperature and humidity control device apply to vehicles for fogging preventing. In Proceedings of the 5th European Conference on Thermoelectrics (2007).

  92. M. Freunek, M. Müller, T. Ungan, W. Walker, and L.M. Reindl: New physical model for thermoelectric generators. J. Electro. Mater. 38, 1214–1220 (2009).

    Article  CAS  Google Scholar 

  93. G. Fraisse, M. Lazard, C. Goupil, and J.Y. Serrat: Study of a thermoelement’s behaviour through a modelling based on electrical analogy. Int. J. Heat and Mass Transfer 53, 3503–3512 (2010).

    Article  CAS  Google Scholar 

  94. A.M. Morega, M. Morega, and M.A. Panait: Structural optimization of a thermoelectric generator by numerical simulation. Rev. Roum. Sci. Tech. Serie Électrotech. Énergétique 55, 3–12 (2010).

    Google Scholar 

  95. E. Sandoz-Rosado and R. Stevens: Robust finite element model for the design of thermoelectric modules. J. Electron. Mater. 39, 1848–1855 (2010).

    Article  CAS  Google Scholar 

  96. D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle: Module geometry and contact resistance of thermoelectric generators analyzed by multiphysics simulation. J. Electron. Mater. 39, 1376–1380 (2010).

    Article  CAS  Google Scholar 

  97. E.W. Weisstein: Bessel function. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Bessetfunction.html/

  98. E.W. Weisstein: Sine integral. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/SineIntegral.html

  99. E.W. Weisstein: Cosine integral. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/CosineIntegral.html

  100. E.W. Weisstein: Dilogarithm. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Dialogarithm.html.

  101. G.N. Watson: A Treatise on the Theory of Bessel Functions (Cambridge University Press, London, 1922).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to G.J. Snyder, California Institute of Technology, and C. Goupil, Laboratoire CRISMAT, Caen, France, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knud Zabrocki.

APPENDIX A: TRANSFORMATION OF THE THERMAL ENERGY BALANCE AND ITS SOLUTION EXPRESSED IN SPECIAL FUNCTIONS

APPENDIX A: TRANSFORMATION OF THE THERMAL ENERGY BALANCE AND ITS SOLUTION EXPRESSED IN SPECIAL FUNCTIONS

The thermal energy balance Eg. (2b) can be written in another notation where it shows

((A1))

with the abbreviations

As one easily sees the b gives the appropriate slope, e.g., κ′(x) = b(κ). There is another form of writing the material profiles with the chosen abbreviations, e.g., κ = a(κ)ξκ + b(κ)x. To derive the Bessel equation from the (homogeneous part of the) thermal energy balance [see Eq. (A1)], we used the following substitution:

$$z = - 2\sqrt {{{ - jb\left( S \right)} \over {{b^2}\left( {\rm{\kappa }} \right)}}} \sqrt {{\rm{\kappa }}\left( x \right)} \equiv A\sqrt {{\rm{\kappa }}\left( x \right)} \quad,$$
((A2))

leading to T″(z) + z–1T′(z) + T(z) = 0 for the homogeneous part of Eq. (A1) which is equivalent to a Bessel equation of order 0 (after multiplying with z2).

The complete inhomogeneous differential equation can be calculated to

((A3))

Some properties of Bessel functions are helpful in calculating the performance parameters,97 f.i. J′0(z) =–J1(z), which leads in our case to

$${d \over {dx}}\left[ {{{\rm{J}}_0}\left( {A\sqrt {{\rm{\kappa }}\left( x \right)} } \right)} \right] = - {{Ab\left( {\rm{\kappa }} \right)} \over {2\sqrt {{\rm{\kappa }}\left( x \right)} }}{{\rm{J}}_1}\left( {A\sqrt {{\rm{\kappa }}\left( x \right)} } \right)\quad.$$
((A4))

The integral of the Bessel function gives

$$\int {{{\rm{J}}_0}\left( {A\sqrt {{\rm{\kappa }}\left( x \right)} } \right)dx = {{2\sqrt {{\rm{\kappa }}\left( x \right)} } \over {Ab\left( {\rm{\kappa }} \right)}}{{\rm{J}}_1}\left( {A\sqrt {{\rm{\kappa }}\left( x \right)} } \right)} \quad.$$
((A5))

Analogous relations are found for the Bessel function of the second kind Y0(z).

Here, Si(x) and Ci(x) are the respective sine and cosine integral98, 99

((A6))

with Euler’s constant γ.

The function Li2(z) is the dilogarithm function100 defined as

$$\matrix{ {{\rm{L}}{{\rm{i}}_2}\left( z \right) = \sum\limits_{k = 1}^\infty {{{{z^k}} \over {{k^2}}}} } & {{\rm{or}}} & {{\rm{L}}{{\rm{i}}_2}\left( z \right) \equiv \int\limits_z^0 {{{\ln \left( {1 - t} \right)} \over t}dt\quad.} } \cr } $$
((A7))

A more detailed discussion and a number of relations can be found in Refs. 5660 and 97101 and references therein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabrocki, K., Müller, E., Seifert, W. et al. Performance optimization of a thermoelectric generator element with linear, spatial material profiles in a one-dimensional setup. Journal of Materials Research 26, 1963–1974 (2011). https://doi.org/10.1557/jmr.2011.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.91

Navigation