Thermoelectric nanocomposite from the metastable void filling in caged skutterudite

Abstract

We report a novel approach to realize the formation of well-distributed nanodispersions in n-type filled skutterudite through the manipulation of metastable void fillers by a designed sophisticated process of materials synthesis. Metastable Ga filling in CoSb3 is proved to happen at high temperature. The subsequent controlled annealing procedure drives Ga out of the crystal voids and finally leads to the homogeneous dispersion of GaSb nanodots with an average size of 11 nm in CoSb3 matrix. The grain size of nanodispersions can be manipulated by the controlled cooling procedure. The well-distributed nanodispersions are observed to enhance Seebeck coefficients and reduce lattice thermal conductivity at low temperature. Therefore, the thermoelectric performance of nanocomposite is improved in the whole temperature range. The highest figure of merit (ZT) is obtained to be 1.45 at 850 K, and an average ZT of 0.99 in 300−850 K is achieved for Yb0.26Co4Sb12/0.2GaSb nanocomposite.

This is a preview of subscription content, access via your institution.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

REFERENCES

  1. 1.

    H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, T. Roch, and G. Bauer: PbTe based superlattice structures with high thermoelectric efficiency. Appl. Phys. Lett. 80, 1216 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    H. Böttner, G. Chen, and R. Venkatasubramanian: Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211 (2006).

    Article  Google Scholar 

  3. 3.

    B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    X. Ji, J. He, Z. Su, N. Gothard, and T.M. Tritt: Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach. J. Appl. Phys. 104, 034907 (2008).

    Article  Google Scholar 

  6. 6.

    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    X. Ke, C. Chen, J. Yang, L. Wu, J. Zhou, Q. Li, Y. Zhu, and P.R.C. Kent: Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 103, 145502 (2009).

    Article  Google Scholar 

  8. 8.

    J.P. Heremans, C.M. Thrush, and D.T. Morelli: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  9. 9.

    J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  11. 11.

    T. Caillat, A. Borshchevsky, and J.P. Fleurial: Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, and C. Uher: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    L. Xi, J. Yang, C. Lu, Z. Mei, W. Zhang, and L. Chen: Systematic study of the multiple-element filling in caged skutterudite CoSb3. Chem. Mater. 22, 2384 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).

    Article  Google Scholar 

  16. 16.

    P.N. Alboni, X. Ji, J. He, N. Gothard, and M.T. Tritt: Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 5 (2008).

    Article  Google Scholar 

  17. 17.

    Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, and M. Muhammed: Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit. Nanotechnology 18, 235602 (2007).

    Article  Google Scholar 

  18. 18.

    Z. Xiong, X.H. Chen, X.Y. Zhao, S.Q. Bai, X.Y. Huang, and L.D. Chen: Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12. Solid State Sci. 11, 1612 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    H. Li, X. Tang, X. Su, and Q. Zhang: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008).

    Article  Google Scholar 

  20. 20.

    H. Li, X. Tang, Q. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  21. 21.

    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    X.Y. Zhao, X. Shi, L.D. Chen, W. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto: Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  24. 24.

    Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J. Yang: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009).

    Article  Google Scholar 

  25. 25.

    J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80, 115329 (2009).

    Article  Google Scholar 

  26. 26.

    G. Kresse and J. Furthmüler: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    X. Shi, W. Zhang, L.D. Chen, and J. Yang: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).

    Article  Google Scholar 

  29. 29.

    M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF thermochemical tables. Third edition. J. Phys. Chem. Ref. Data 14, 1204 (1985).

    Google Scholar 

  30. 30.

    A.T. Dinsdale: SGTE Data for pure elements. Calphad 15, 317 (1991).

    CAS  Article  Google Scholar 

  31. 31.

    X.F. Sun, S. Ono, X. Zhao, Z.Q. Pang, Y. Abe, and Y. Ando: Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. B 77, 094515 (2008).

    Article  Google Scholar 

  32. 32.

    G.A. Lamberton, R.H. Tedstrom, T.M. Tritt, and G.S. Nolas: Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J. Appl. Phys. 97, 113715 (2005).

    Article  Google Scholar 

  33. 33.

    Z. Xiong, X. Chen, X. Huang, S.Q. Bai, and L.D. Chen: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin: A guest-free germanium clathrate. Nature 443, 320 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    E.S. Toberer, M. Christensen, B.B. Iversen, and G.J. Snyder: High temperature thermoelectric efficiency in Ba8Ga16Ge30. Phys. Rev. B 77, 075203 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. F.F. Xu and Ms. M.L. Ruan (Shanghai Institute of Ceramics, Chinese Academy of Sciences) for their careful TEM characterization and helpful discussions and Prof. X.F. Sun (Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China) for his kind low temperature thermal conductivity measurements. This work was partially supported by the National Basic Research Program of China (2007CB607502), Natural Science Foundation of China project (No. 50821004), and Corning Inc.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhen Xiong or Lili Xi or Lidong Chen or Wenqing Zhang.

APPENDIX

APPENDIX

FIG. A1.
figurea1

Powder x-ray diffraction patterns of the samples.

FIG. A2.
figurea2

Scanning electron microscopy images for the polished surface after eroding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiong, Z., Xi, L., Ding, J. et al. Thermoelectric nanocomposite from the metastable void filling in caged skutterudite. Journal of Materials Research 26, 1848–1856 (2011). https://doi.org/10.1557/jmr.2011.90

Download citation