P-type doping of Hf0.6Zr0.4NiSn half-Heusler thermoelectric materials prepared by levitation melting and spark plasma sintering

Abstract

The Y-doped (Hf0.6Zr0.4)1-xYxNiSn (x = 0, 0.01, 0.02, 0.04, 0.06, 0.1, and 0.2) half-Heusler alloys have been prepared by levitation melting and spark plasma sintering. The effect of Y doping on thermoelectric properties of the alloys was investigated in the temperature range of 300–900 K. Y-doped samples had the lower electrical conductivity compared with the parent compound without Y doping. The thermal conductivity had weak dependence on Y doping content. The absolute values of Seebeck coefficient decreased significantly when x < 0.04. The sign of Seebeck coefficient turned from negative to positive at room temperature for x = 0.04 and 0.1, which means that the hole carriers became dominant in these alloys. However, the alloys changed to n-type conduction again at high temperatures. The maximum figure of merit value of about 0.45 was obtained at 780 K for the undoped sample.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.

REFERENCES

  1. 1.

    T.M. Tritt: Thermoelectric materials—holey and unholey semiconductors. Science 283, 804 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    G.A. Slack: New materials and performance limits for thermoelectric cooling, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.

    Google Scholar 

  3. 3.

    F.G. Aliev, N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, and A.I. Belogorokhov: Gap at the Fermi level in the intermetallic vacancy system TiNiSn, ZrNiSn, HfNiSn. Z. Phys. B Condens. Matter 75, 167 (1989).

    CAS  Article  Google Scholar 

  4. 4.

    F.G. Aliev: Gap at Fermi level in some new d-electron and f-electron intermetallic compounds. Physica B 171, 199 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and W.B. Zhang: The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J. Appl. Phys. 99, 064305 (2006).

    Article  Google Scholar 

  6. 6.

    C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He: High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm: Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 88, 042106 (2006).

    Article  Google Scholar 

  8. 8.

    S. Sakurada and N. Shutoh: Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 86, 082105 (2005).

    Article  Google Scholar 

  9. 9.

    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher: Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 79, 4165 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    J. Barth, M. Schoop, A. Gloskovskii, A. Shkabko, A. Weidenkaff, and C. Felser: Investigation of the thermoelectric properties of the series TiCo1-xNixSnxSb1-x. Z. Anorg. Allg. Chem. 636, 132 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    P.F. Qiu, X.Y. Huang, X.H. Chen, and L.D. Chen: Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. J. Appl. Phys. 106, 103703 (2009).

    Article  Google Scholar 

  12. 12.

    W.J. Xie, Q. Jin, and X.F. Tang: The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1-xNixSb half-Heusler compounds. J. Appl. Phys. 103, 043711 (2008).

    Article  Google Scholar 

  13. 13.

    W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, and T.M. Tritt: Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni)Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 58, 4705 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka: LnPdSb (Ln = La, Gd): Promising intermetallics with large carrier mobility for high performance p-type thermoelectric materials. Appl. Phys. Lett. 89, 092108 (2006).

    Article  Google Scholar 

  15. 15.

    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka: Thermoelectric and thermophysical properties of ErPdX (X=Sb and Bi) half-Heusler compounds. J. Appl. Phys. 99, 103701 (2006).

    Article  Google Scholar 

  16. 16.

    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka: High-temperature Hall measurements of lanthanide based ternary intermetallics. J. Appl. Phys. 102, 023705 (2007).

    Article  Google Scholar 

  17. 17.

    K. Kawano, K. Kurosaki, H. Muta, and S. Yamanaka: Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1-xPdxSb. J. Appl. Phys. 104, 013714 (2008).

    Article  Google Scholar 

  18. 18.

    Y. Kimura and A. Zama: Thermoelectric properties of p-type half-Heusler compound HfPtSn and improvement for high-performance by Ir and Co additions. Appl. Phys. Lett. 89, 172110 (2006).

    Article  Google Scholar 

  19. 19.

    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka: High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1-x. Jpn. J. Appl. Phys. 46 (Pt 2), 673 (2007).

    Article  Google Scholar 

  20. 20.

    T. Wu, W. Jiang, X.Y. Li, S.Q. Bai, S.C. Liufu, and L.D. Chen: Effects of Ge doping on the thermoelectric properties of TiCoSb-based p-type half-Heusler compounds. J. Alloy. Comp. 467, 590 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    V. Ponnambalam, P.N. Alboni, J. Edwards, T.M. Tritt, S.R. Culp, and S.J. Poon: Thermoelectric properties of p-type half-Heusler alloys Zr1-xTixCoSnySb1-y (0.0 < x < 0.5; y=0.15 and 0.3). J. Appl. Phys. 103, 063716 (2008).

    Article  Google Scholar 

  22. 22.

    S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt: (Zr, Hf)Co(Sb, Sn) half-Heusler phases as high-temperature (> 700 degrees C) p-type thermoelectric materials. Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  23. 23.

    S. Katsuyama, R. Matsuo, and M. Ito: Thermoelectric properties of half-Heusler alloys Zr1-xYxNiSn1-ySby. J. Alloy. Comp. 428, 262 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    E.K. Hlil, Y. Stadnyk, Y. Gorelenko, L. Romaka, A. Horyn, and D. Fruchart: Synthesis, electronic transport and magnetic properties of Zr1-xYxNiSn, (x=0-0.25) solid solutions. J. Solid State Chem. 183, 521 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    T.J. Zhu, K. Xiao, C. Yu, J.J. Shen, S.H. Yang, A.J. Zhou, X.B. Zhao, and J. He: Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 108, 044903 (2010).

    Article  Google Scholar 

  26. 26.

    C. Yu, Y. Zhang, T.J. Zhu, G.Y. Jiang, J. Xu, B. Zhao, and X.B. Zhao: Preparation and thermoelectric properties of Zr1-xTixNiSn0.975Sb0.025 half-Heusler alloys. J. Mater. Sci. Technol. 25, 738 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, and X.B. Zhao: Nanostructures in high performance thermoelectric materials (GeTe)x(AgSbTe2)100-x. Nanotechnology 19, 245707 (2008).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the Natural Science Foundation of China (50731006, 51061120455, and 50971115) and the National Basic Research Program of China (2007CB607502).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Zhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, K., Zhu, TJ., Yu, C. et al. P-type doping of Hf0.6Zr0.4NiSn half-Heusler thermoelectric materials prepared by levitation melting and spark plasma sintering. Journal of Materials Research 26, 1913–1918 (2011). https://doi.org/10.1557/jmr.2011.82

Download citation