Skip to main content
Log in

Relationship between thermal conductivity and structure of nacre from Haliotis fulgens

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal conductivity of nacre from red abalone (Haliotis fulgens) has been determined as a function of temperature (2–300 K), direction, and treatment to partially demineralize or to remove a portion of the organic matrix. The room-temperature thermal conductivity and specific heat of nacre are ∼1 W m−1 K−1 and 0.9 J K−1 g−1, respectively. The thermal conductivity of nacre is rather low and glass-like. It is not as anisotropic as one might expect on the basis of brick-and-mortar structure, in support of recent findings that the aragonite tablets are not monolithic. Partial removal of the mineral component reduces the thermal conductivity in both principal directions, whereas partial removal of the proteins (as observed by 13C NMR) only reduces the thermal conductivity across the aragonite layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. B.J.F. Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Lai, L. Frick, and C. Ortiz: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400 (2005).

    Article  CAS  Google Scholar 

  2. M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslain, and X. Bourrat: Multiscale structure of sheet nacre. Biomaterials 26, 6254 (2005).

    Article  CAS  Google Scholar 

  3. A.P. Jackson, J.F.V. Vincent, and R.M. Turner: The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415 (1988).

    Article  Google Scholar 

  4. A.Y. Lin and M.A. Meyers: Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2, 607 (2009).

    Article  Google Scholar 

  5. A.G. Checa and A.B. Rodríguez-Navarro: Self-organization of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials 26, 1071 (2005).

    Article  CAS  Google Scholar 

  6. P.U.P.A. Gilbert, R.A. Metzler, D. Zhou, A. Scholl, A. Doran, A. Young, M. Kunz, N. Tamura, and S.N. Coppersmith: Gradual ordering in red abalone nacre. J. Am. Chem. Soc. 130, 17519 (2008).

    Article  CAS  Google Scholar 

  7. R. Knitter, C. Odemer, and J. Hausselt: Thermal investigations on abalone nacre. CFI-Ceramic Forum International 85, E38 (2008).

    Google Scholar 

  8. F. Barthelat, C.-M. Li, C. Comi, and H.D. Espinosa: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977 (2006).

    Article  CAS  Google Scholar 

  9. C. Jäger and H. Cölfen: Fine structure of nacre revealed by solid state 13C and 1H NMR. CrystEngComm. 9, 1237 (2007).

    Article  Google Scholar 

  10. B. Pokroy, J.S. Fieramosca, R.B. Von Dreele, A.N. Fitch, E.N. Caspi, and E. Zolotoyabko: Atomic structure of biogenic aragonite. Chem. Mater. 19, 3244 (2007).

    Article  CAS  Google Scholar 

  11. M. Darder, P. Aranda, and E. Ruiz-Hitzky: Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 19, 1309 (2007).

    Article  CAS  Google Scholar 

  12. M.E. Launey and R.O. Ritchie: On the fracture toughness of advanced materials. Adv. Mater. 21, 2103 (2009).

    Article  CAS  Google Scholar 

  13. R.A. Metzler, J.S. Evans, C.E. Killian, D. Zhou, T.H. Churchill, N.P. Appathurai, S.N. Coppersmith, and P.U.P.A. Gilbert: Nacre protein fragment templates lamellar aragonite growth. J. Am. Chem. Soc. 132, 6329 (2010).

    Article  CAS  Google Scholar 

  14. A. Lin and M.A. Myers: Growth and structure in abalone shell. Mater. Sci. Eng. A 390, 27 (2005).

    Article  Google Scholar 

  15. R. Menig, M.H. Meyers, M.A. Meyers, and K.S. Vecchio: Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 (2000).

    Article  CAS  Google Scholar 

  16. J.S. Huang, K.J. Lin, and C. Tien: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum. 68, 94 (1997).

    Article  Google Scholar 

  17. C.A. Kennedy, M. Stancescu, R.A. Marriott, and M.A. White: Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system. Cryogenics 47, 107 (2007).

    Article  CAS  Google Scholar 

  18. O. Maldonado: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 908 (1992).

    Article  Google Scholar 

  19. M.B. Jakubinek, C.J. Samarasekera, and M.A. White: Elephant ivory: A low thermal conductivity, high strength nanocomposite. J. Mater. Res. 21, 287 (2006).

    Article  CAS  Google Scholar 

  20. O. Gómez, P. Quintana, D.H. Aguilar, J.J. Alvarado-Gil, M. Yánez-Limón, L. Diaz, and D. Aldana: Photothermal characterization of materials biomineralized by mollusks. Rev. Sci. Instrum. 74, 750 (2003).

    Article  Google Scholar 

  21. M.A. White: Physical Properties of Materials (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  22. C. Clauser and E. Huenges: Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations: a Handbook of Physical Constants; T.J. Aherns, ed.; American Geological Union, Washington, DC, (1995).

    Google Scholar 

  23. T.R. Tuladhar, W.R. Paterson, and D.I. Wilson: Investigation of alkaline cleaning-in-place of whey protein deposits using dynamic gauging. Food Bioprod. Process. 80, 332 (2002).

    Article  CAS  Google Scholar 

  24. L.A.K. Staveley and R.G. Linford: The heat capacity and entropy of calcite and aragonite, and their interpretation. J. Chem. Thermodyn. 1, 1 (1969).

    Article  CAS  Google Scholar 

  25. T.M. Tritt: Thermal Conductivity: Theory, Properties and Applications (Kluwer/Plenum, New York, 2004).

    Book  Google Scholar 

  26. G. Chen: Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39, 471 (2000).

    Article  CAS  Google Scholar 

  27. Y-Y Hu K Schmidt-Rohr (2009) ArticleTitleEffects of L-spin longitudinal quadrupolar relaxation in S{L} heteronuclear recoupling and S-spin magic-angle spinning NMR J. Magn. Reson. 197 193 Occurrence Handle1:CAS:528:DC%2BD1MXjs1amtrY%3D Occurrence Handle10.1016/j.jmr.2008.12.021

    Article  CAS  Google Scholar 

  28. N.S. Gupta, G.D. Cody, O.E. Tetlie, D.E.G. Briggs, and R.E. Summons: Rapid incorporation of lipids into macromolecules during experimental decay of invertebrates: Initiation of geopolymer formation. Org. Geochem. 40, 589 (2009).

    Article  CAS  Google Scholar 

  29. H.W. Papenguth, R.J. Kirkpatrick, B. Montez, and P.A. Sandberg: 13C MAS NMR spectroscopy of inorganic and biogenic carbonates. Am. Mineral. 74, 1152 (1989).

    CAS  Google Scholar 

  30. K. Takahashi, H. Yamamoto, A. Onoda, M. Doi, T. Inaba, M. Chiba, A. Kobayashi, T. Taguchi, T. Okumura, and N. Ueyama: Highly oriented aragonite nanocrystal–biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata. Chem. Commun. 996 (2004).

  31. F.A. Al Sagheer, M.A. Al-Sughayer, S. Muslim, and M.Z. Elsabee: Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410 (2009).

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Andrew George, Tolga Goren, Dr. Michael Jakubinek, Dr. Ping Li, Patricia Scallion, and Dr. Catherine Whitman for input. This work was supported by National Sciences and Engineering Research Council of Canada (NSERC) of Canada, NMR-3 at the Department of Chemistry of Dalhousie University, and the Canada Foundation for Innovation, Atlantic Innovation Fund, and other partners, which fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Anne White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremblay, L.P., Johnson, M.B., Werner-Zwanziger, U. et al. Relationship between thermal conductivity and structure of nacre from Haliotis fulgens. Journal of Materials Research 26, 1216–1224 (2011). https://doi.org/10.1557/jmr.2011.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.76

Navigation