Ion repelling effect of nanopores in a hydrophobic zeolite

Abstract

By measuring the ion concentration in a pressure-induced infiltration experiment on a hydrophobic Zeolite Socony Mobil-5, it is found that the nanopore wall has a strong ion repelling effect. When the initial ion concentration is relatively low, only water molecules can enter the nanopores. Once the initial ion concentration is relatively high, ions can infiltrate into the nanopores, but the effective ion concentration of the confined liquid is much lower.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Fig. 4

References

  1. 1.

    S. Howorka and Z. Siwy: Nanopore analytics—Sensing of single molecules. Chem. Soc. Rev. 38, 2360 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    J.O. Bockris and S.U.M. Khan: Surface Electrochemistry (Springer, New York, 1993).

    Google Scholar 

  3. 3.

    R.Z. Wan and H.P. Fang: Water transportation across narrow channel of nanometer dimension. Solid State Commun. 150, 968 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    G. Hummer, J.C. Rasaiah, and J.P. Noworyta: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    X. Chen, G. Cao, A. Han, V.K. Punyamurtula, L. Liu, P.J. Culligan, T. Kim, and Y. Qiao: Nanoscale fluid transport—Size and rate effects. Nano Lett. 8, 2988 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    H. Daiguji: Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Qiao, V.K. Punyamurtula, A. Han, and H. Lim: Thermal-to-electric energy conversion of a nanoporous carbon. J. Power Sources 183, 403 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Qiao, L. Liu, and X. Chen: Pressurized liquid in nanopores—A modified Laplace-Young equation. Nano Lett. 9, 984 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    A. Han, W. Lu, V.K. Punyamurtula, X. Chen, F.B. Surani, T. Kim, and Y. Qiao: Effective viscosity of glycerin in a nanoporous silica gel. J. Appl. Phys. 104, 124908.1–4 (2008).

    Google Scholar 

  10. 10.

    L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao: Infiltration of electrolytes in molecular-sized nanopores. Phys. Rev. Lett. 102, 184501.1–4 (2009).

    Google Scholar 

  11. 11.

    W. Lu, A. Han, T. Kim, H. Lim, and Y. Qiao: Effects of surface charging treatment on outer and inner surfaces of a nanoporous carbon. J. Mater. Res. 24, 2471 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    A. Han and Y. Qiao: High-pressure cation-exchange treatment of a ZSM-5 zeolite. J. Mater. Res. 24, 2416 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    F.B. Surani, X. Kong, and Y. Qiao: Two-staged sorption isotherm of a nanoporous energy absorption system. Appl. Phys. Lett. 87, 251906.1–3 (2005).

    Google Scholar 

  14. 14.

    F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, and O. Bakajin: Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. U.S.A. 105, 17250 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    T.S. Sorenson: Surface Chemistry and Electrochemistry of Membranes (CRC Press, Boca Raton, FL, 1999).

    Google Scholar 

  16. 16.

    P. Wang and D.W. Schaefer: Salt exclusion in silane-laced epoxy coatings. Langmuir 26(1), 234 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Laboratory under Grant No. ECCS-1028010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chow, B.J., Lu, W., Han, A. et al. Ion repelling effect of nanopores in a hydrophobic zeolite. Journal of Materials Research 26, 1164–1167 (2011). https://doi.org/10.1557/jmr.2011.73

Download citation