Structural and multiband photoluminescent properties of a hierarchical ZnO/Si nanoheterostructure


Hierarchical ZnO/Si nanoheterostructure was prepared by growing oriented ZnO nanowire bundles onto the top of nanoporous silicon pillar array (NSPA) via a self-catalytic thermal evaporation and vapor-phase transport method. Samples were carefully characterized using field emission scanning electron microscopy, x-ray diffraction, and luminescence spectroscopy. One ultraviolet, one blue-green, and two red emission bands were observed in ZnO/NSPA, and the emission mechanism is discussed by developing a model-based energy band diagram. The origins of the ultraviolet and blue-green photoluminescence (PL) bands were attributed to the emission from the band edge transition and surface states of oxygen vacancies of ZnO, while two red PL bands originated from NSPA and could be well explained by the quantum confinement-luminescence center model. The realization of such all solid and wide wavelength nanodevice might be both meaningful for developing new concept lighting devices and potentially extended to fabricate hierarchical Si-based nanoheterostructures in fabricating other optoelectronic nanodevices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    S. Rohrmoser, J. Baldauf, R.T. Harley, P.G. Lagoudakis, S. Sapra, and A. Eychmuller: Temperature dependence of exciton transfer in hybrid quantum well/nanocrystal heterostructures. Appl. Phys. Lett. 91, 092126 (2007).

    Article  Google Scholar 

  2. 2.

    J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    P. Rauter, T. Fromherz, N.Q. Vinh, B.N. Murdin, G. Mussler, D. Grutzmacher, and G. Bauer: Continuous voltage tunability of intersubband relaxation times in coupled SiGe quantum well structures using ultrafast spectroscopy. Phys. Rev. Lett. 102, 147401 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, and X. Zhao: Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 95, 013509 (2009).

    Article  Google Scholar 

  5. 5.

    M. Tzolov, B. Chang, A. Yin, D. Straus, J.M. Xu, and G. Brown: Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array. Phys. Rev. Lett. 92, 075505 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    W. Yi, V. Narayanamurti, H. Lu, M.A. Scarpulla, and C. Gossard: Probing semiconductor band structures and heterojunction interface properties with ballistic carrier emission: GaAs/AlxGa1−xAs as a model system. Phys. Rev. B 81, 235325 (2010).

    Article  Google Scholar 

  7. 7.

    M.C. Jeong, B.Y. Oh, M.H. Ham, S.W. Lee, and J.M. Myoung: ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 3, 568 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Tak, J. Hong, J.S. Lee, and K. Yong: Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19, 5945 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Hsieh, H. Chen, M. Lin, S. Shiu, M. Hofmann, M. Chern, X. Jia, Y. Yang, H. Chang, H. Huang, S. Tseng, L. Chen, K. Chen, C. Lin, C. Liang, and Y. Chen: Electroluminescence from ZnO/Si-nanotips light-emitting diodes. Nano Lett. 9, 1839 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    M. Willander, O. Nur, N. Bano, and K. Sultana: Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. N. J. Phys. 11, 125020 (2009).

    Article  Google Scholar 

  11. 11.

    Y.M. Chang, S.R. Jian, H.Y. Lee, C.M. Lin, and J.Y. Juang: Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Nanotechnology 21, 385705 (2010).

    Article  Google Scholar 

  12. 12.

    H.J. Xu and X.J. Li: Silicon nanoporous pillar array: A silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express 16, 2933 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Xu and X.J. Li: Preparation, structural and photoluminescent properties of CdS/silicon nanoporous pillar array. J. Phys. Condens. Matter 19, 056003 (2007).

    Article  Google Scholar 

  14. 14.

    H.J. Xu and X.J. Li: Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array. Appl. Phys. Lett. 93, 172105 (2008).

    Article  Google Scholar 

  15. 15.

    X. Yan, B.K. Tay, and P. Miele: Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon 46, 753 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Fan, D.J. Ruebusch, A.J. Rathore, R. Kapadia, O. Ergen, P.W. Leu, and A. Javey: Challenges and prospects of nanopillar based solar cells. Nano Res. 2, 829 (2009).

    Article  Google Scholar 

  17. 17.

    C.S. Ku, J.M. Huang, C.Y. Cheng, C.M. Lin, and H.Y. Lee: Annealing effect on the optical response and interdiffusion of n-ZnO/p-Si (111) heterojunction grown by atomic layer deposition. Appl. Phys. Lett. 97, 181915 (2010).

    Article  Google Scholar 

  18. 18.

    V.A. Fonoberov, K.A. Alim, A.A. Balandin, F.X. Xiu, and J.L. Liu: Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO. Phys. Rev. B. 73, 165317 (2006).

    Article  Google Scholar 

  19. 19.

    C. Li, G.J. Fang, G.H. Su, G.H. Li, X.G. Wu, and X.Z. Zhao: Synthesis and photoluminescence properties of vertically aligned ZnO nanorod-nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology 17, 3740 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    P.H. Kasai: Electron spin resonance studies of donors and acceptors in ZnO. Phys. Rev. 130, 989 (1963).

    CAS  Article  Google Scholar 

  21. 21.

    A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink: The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  22. 22.

    Y.L. Liu, Y.C. Liu, H. Yang, W.B. Wang, J.G. Ma, J.Y. Zhang, Y.M. Lu, D.Z. Shen, and X.W. Fan: The optical properties of ZnO films grown on porous Si templates. J. Phys. D Appl. Phys. 36, 2705 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    R.G. Singh, F. Singh, D. Kanjilal, V. Agarwal, and R.M. Mehra: White light emission from chemically synthesized ZnO–porous silicon nanocomposite. J. Phys. D Appl. Phys. 42, 062002 (2009).

    Article  Google Scholar 

Download references


This work was supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20090010120014), the Beijing Natural Science Foundation (Grant No. 1103033), and the Fundamental Research Funds for the Central Universities.

Author information



Corresponding author

Correspondence to Hai Jun Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, H.J., Su, L., Chan, Y.F. et al. Structural and multiband photoluminescent properties of a hierarchical ZnO/Si nanoheterostructure. Journal of Materials Research 26, 1174–1178 (2011).

Download citation