Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion

Abstract

Near-infrared quantum cutting involving the conversion of one visible photon into two near-infrared photons was demonstrated in Ca0.99−xYbxWO4: Tb0.01 phosphors. From the analysis of the refinement of x-ray diffraction patterns, the suitable concentration range of Yb3+ in Ca0.99WO4: 0.01Tb3+ was determined to be 0–20%. By investigating their luminescent spectra and decay lifetimes, second-order downconversion from Tb3+ to Yb3+ were proved and the possible quantum cutting mechanism was proposed. Quantum efficiency related to Yb3+ concentration was calculated and the maximum efficiency was reached at 140.4%. Because the energy of Yb3 + 2F7/22F5/2 transition matches well with the band gap of the crystalline Si, the Ca0.99−xYbxWO4: Tb0.01 phosphors could be potentially applied in silicon-based solar cells.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

References

  1. 1.

    R.T. Wegh, H. Donker, K.D. Oskam, and A. Meijerink: Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science 283, 663 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Z.G. Nie, J.H. Zhang, X. Zhang, and X.G. Ren: Evidence for visible quantum cutting via energy transfer in SrAl12O19: Pr, Cr. Opt. Lett. 32, 991 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    S. Hachani, B. Moine, A. El-akrmi, and M. Férid: Luminescent properties of some ortho- and pentaphosphates doped with Gd3+-Eu3+: Potential phosphors for vacuum ultraviolet excitation. Opt. Mater. 31, 678 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    R.T. Wegh, E.V.D. van Loef, and A. Meijerink: Visible quantum cutting via downconversion in LiGdF4: Er3+, Tb3+ upon Er3+ 4f11 ? 4f105d excitation. J. Lumin. 90, 111 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    B. Moine, L. Beauzamy, P. Gredin, G. Wallez, and J. Labeguerie: Research of green emitting rare-earth doped materials as potential quantum-cutter. Opt. Mater. 30, 1083 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    G. Lakshminarayana, H.C. Yang, S. Ye, Y. Liu, and J.R. Qiu: Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2–Al2O3–BaF2–GdF3 glasses. J. Mater. Res. 23, 3090 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, and F.Y. Weng: Near-infrared quantum cutting in transparent nanostructured glass ceramics. Opt. Lett. 33, 1884 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S. Ye, B. Zhu, J. Luo, J.X. Chen, G. Lakshminarayana, and J.R. Qiu: Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Opt. Express 6, 8989 (2008).

    Article  Google Scholar 

  9. 9.

    P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. Den Hertog, J.P.J.M. van der Eerden, and A. Meijerink: Quantum cutting by cooperative energy transfer in Yb xY 1-xPO4:Tb3+. Phys. Rev. B 71, 014119 (2005).

    Article  Google Scholar 

  10. 10.

    Q.Y. Zhang and X.Y. Huang: Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 55, 353 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    D.Q. Chen, Y.L. Yu, Y.S. Wang, P. Huang, and F.Y. Weng: Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics. J. Phys. Chem. C 113, 6406 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    E. Martins, C.B. de Araújo, J.R. Delben, A.S.L. Gomes, B.J. da Costa, and Y. Messaddeq: Cooperative frequency up conversion in Yb3+-Tb3+ codoped fluoroindate glass. Opt. Commun. 158, 61 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    F.W. Ostermayer Jr. and L.G. Van Uitert: Cooperative energy transfer from Yb3+ to Tb3+ in YF3. Phys. Rev. B 1, 4208 (1970).

    Article  Google Scholar 

  14. 14.

    S. Faulkner and S.J.A. Pope: Lanthanide-sensitized lanthanide luminescence: Terbium-sensitized ytterbium luminescence in a trinuclear complex. J. Am. Chem. Soc. 125, 10526 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Q.Y. Zhang, C.H. Yang, Z.H. Jiang, and X.H. Ji: Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+, Yb3+ nanophosphors. Appl. Phys. Lett. 90, 061914 (2007).

    Article  Google Scholar 

  16. 16.

    Y.H. Wang, L.C. Xie, and H.J. Zhang: Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99-xYb xBaB9O16:Tb0.01. J. Appl. Phys. 105, 023528 (2009).

    Article  Google Scholar 

  17. 17.

    Y. Su, L. Li, and G. Li: Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln = Tb, Sm, Dy, Eu). J. Mater. Chem. 19, 2316 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    D. Chen, Y. Wang, Y. Yu, and E. Ma: Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals. Mater. Chem. Phys. 101, 464 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors thank the National Natural Science Foundation of China (10874061), the Research Fund for the Doctoral Program of Higher Education (200807300010), and the National Science Foundation for Distinguished Young Scholars (50925206).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Z., Wang, Y., Li, Y. et al. Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion. Journal of Materials Research 26, 693–696 (2011). https://doi.org/10.1557/jmr.2011.6

Download citation