Selective lateral ZnO nanowire growth by surface diffusion on nanometer scale–patterned alumina on silicon


Lateral ZnO nanowires (NWs) were selectively grown from the edge of a SiO2/Si–Al2O3–SiO2/Si multilayer structure for potential integration into devices using Si processing technology. Microstructural studies demonstrate a two-step growth process in which the tip region, with a diameter of ~10 nm, rapidly grew from the Al2O3 surface and, later, a base growth with a diameter of ~22 nm overgrew the existing narrow ZnO NW, halting further tip growth. Kinetics studies showed that surface diffusion on the alumina seed surface determined ZnO NW growth rate.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.


  1. 1.

    S.J. Tans, A.R.M Verschueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    X.F. Duan, Y. Huang, R. Agarwal, and C.M. Lieber: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, and H.J. Dai: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Z.L. Wang: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, 829 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    J. Park, H.H. Choi, K. Siebein, and R.K. Singh: Two-step evaporation process for formation of aligned zinc oxide nanowires. J. Cryst. Growth 258, 342 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, and B.L. Su: Simple approach to highly oriented ZnO nanowire arrays: Large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology 17, 588 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, and Z.L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    M.C. Jeong, B.Y. Oh, O.H. Nam, T. Kim, and J.M. Myoung: Three-dimensional ZnO hybrid nanostructures for oxygen sensing application. Nanotechnology 17, 526 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, and P.D. Yang: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. (Deerfield Beach Fla.) 13, 113 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, and H.J. Choi: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    E.C. Greyson, Y. Babayan, and T.W. Odom: Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. (Deerfield Beach Fla.) 16, 1348 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, and M. Zacharias: Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287, 34 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, and P.H. Fleming: Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Z.M. Zhu, T.L. Chen, Y. Gu, J. Warren, and R.M. Osgood: Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts: A comparative study. Chem. Mater. 17, 4227 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    W. Lee, M.C. Jeong, and J.M. Myoung: Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation. Nanotechnology 15, 1441 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    J.F. Conley, L. Stecker, and Y. Ono: Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer. Nanotechnology 16, 292 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    L.S. Wang, X.Z. Zhang, S.Q. Zhao, G.Y. Zhou, Y.L. Zhou, and J.J. Qi: Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005).

    Article  CAS  Google Scholar 

  19. 19.

    J.S. Jie, G.Z. Wang, Y.M. Chen, X.H. Han, Q.T. Wang, B. Xu, and J.G. Hou: Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl. Phys. Lett. 86, 031909 (2005).

    Article  CAS  Google Scholar 

  20. 20.

    A. Sekar, S.H. Kim, A. Umar, and Y.B. Hahn: Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. J. Cryst. Growth 277, 471 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    J.B. Baxter and E.S. Aydil: Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. J. Cryst. Growth 274, 407 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    W.I. Park and G.C. Yi: Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. (Deerfield Beach Fla.) 16, 87 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    S.Y. Li, P. Lin, C.Y. Lee, and T.Y. Tseng: Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 95, 3711 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    P.X. Gao, J. Liu, B.A. Buchine, B. Weintraub, Z.L. Wang, and J.L. Lee: Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 91, 142108 (2007).

    Article  CAS  Google Scholar 

  25. 25.

    J.B.K Law and J.T.L Thong: Lateral ZnO nanowire growth on a planar substrate using a growth barrier. Nanotechnology 18, 055601 (2007).

    Article  CAS  Google Scholar 

  26. 26.

    Y. Qin, R.S. Yang, and Z.L. Wang: Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    J.S. Lee, M.S. Islam, and S. Kim: Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. Nano Lett. 6, 1487 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    H. Tang, J.C. Chang, Y. Shan, D.D.D Ma, T.-Y. Lui, J.A. Zapien, C.-S. Lee, and S.-T. Lee: Growth mechanism of ZnO nanowires via direct Zn evaporation. J. Mater. Sci. 44, 563 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    Z.W. Pan, J.D. Budai, Z.R. Dai, W.J. Liu, M.P. Paranthaman, and S. Dai: Zinc oxide microtowers by vapor phase homoepitaxial regrowth. Adv. Mater. (Deerfield Beach Fla.) 21, 890 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    N. Chopra, P.D. Kichambare, R. Andrews, and B.J. Hinds: Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film multilayer structure. Nano Lett. 2, 1177 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    N. Chopra, W.T. Xu, L.E. De Long, and B.J. Hinds: Incident angle dependence of nanogap size in suspended carbon nanotube shadow lithography. Nanotechnology 16, 133 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    J. Lefebvre, M. Radosavljevic, and A.T. Johnson: Fabrication of nanometer size gaps in a metallic wire. Appl. Phys. Lett. 76, 3828 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    D. Hausmann, J. Becker, S.L. Wang, and R.G. Gordon: Rapid vapor deposition of highly conformal silica nanolaminates. Science 298, 402 (2002).

    CAS  Article  Google Scholar 

  34. 34.

    J.W. Elam, Z.A. Sechrist, and S.M. George: ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: Growth and surface-roughness measurements. Thin Solid Films 414, 43 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    N.D. Hoivik, J.W. Elam, R.J. Linderman, V.M. Bright, S.M. George, and Y.C. Lee: Atomic layer deposited protective coatings for microelectromechanical systems. Sens. Actuators A A103, 100 (2003).

    Article  Google Scholar 

  36. 36.

    K.Y. Gao, T. Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley, and R.G.C Leckey: Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001). Appl. Phys. Lett. 83, 1830 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    B. Hu, J.Y. Yao, and B.J. Hinds: Nanogap electrodes formed at the exposed edge of Au/self-assembled monolayer/Al2O3/Au tunnel structures grown by atomic layer deposition. Appl. Phys. Lett. 97, 203111 (2010).

    Article  CAS  Google Scholar 

  38. 38.

    S.N. Cha, B.G. Song, J.E. Jang, J.E. Jung, I.T. Han, J.H. Ha, J.P. Hong, D.J. Kang, and J.M. Kim: Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology 19, 235601 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    V.A.L Roy, A.B. Djurisic, W.K. Chan, J. Gao, H.F. Lui, and C. Surya: Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett. 83, 141 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    H. Kim and W. Sigmund: ZnO nanocrystals synthesized by physical vapor deposition. J. Nanosci. Nanotechnol. 4, 275 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    L. Feng, C. Cheng, M. Lei, N. Wang, and M.M.T Loy: Spatially resolved photoluminescence study of single ZnO tetrapods. Nanotechnology 19, 405702 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    D.S. Kim, U. Gosele, and M. Zacharias: Surface-diffusion induced growth of ZnO nanowires. J. Cryst. Growth 311, 3216 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S.D. Shandakov, H. Lipsanen, and E.I. Kauppinen: Mechanistic investigation of ZnO nanowire growth. Appl. Phys. Lett. 95, 183114 (2009).

    Article  CAS  Google Scholar 

  44. 44.

    R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  45. 45.

    S.S. Brenner and G.W. Sears: Mechanism of whisker growth—III. Nature of growth sites. Acta Metall. Mater. 4, 268 (1956).

    CAS  Article  Google Scholar 

  46. 46.

    Y.W. Heo, K. Ip, S.J. Pearton, D.P. Norton, and J.D. Budai: Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl. Surf. Sci. 252, 7442 (2006).

    CAS  Article  Google Scholar 

Download references


The authors thank Dr. Janet K. Lumpp for providing the flow controller and Dr. John Balk for help in the fabrication of TEM samples. The authors thank the Air Force Office of Scientific Research, Defense Experimental Program to Stimulate Competitive Research (DEPSCoR) under agreement number F49620-02-1-0225, National Science Foundation CAREER (0348544), and National Science Foundation Nanoscale Interdisciplinary Research Teams (NSF NIRT) (0609064). Support was also provided by the Department of Chemical and Materials Engineer-ing, Center for Nanoscale Science and Engineering, and Electron Microscopy Center in University of Kentucky.

Author information



Corresponding author

Correspondence to Nitin Chopra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, B., Chopra, N., Tyagi, P. et al. Selective lateral ZnO nanowire growth by surface diffusion on nanometer scale–patterned alumina on silicon. Journal of Materials Research 26, 2224–2231 (2011).

Download citation