Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys

Abstract

This study investigated a fundamental aspect of thermoelastic martensitic transformations in different shape memory alloys by means of interrupted thermal analysis technique using differential scanning calorimetry (DSC). The objective of this study was to determine the true transformation temperature interval. It also provides the opportunity to further the discussion of time dependence of the transformations. The study applied a technique of thermal arrest amidst phase transformations. The transformation temperature intervals were found to be 8.4 and 12.9 K for the forward and reverse B2↔B19′ martensitic transformation in a near-equiatomic Ti-50.2 at.% Ni alloy and 14.7 and 12.8 K in a Ni-rich Ti-50.8 at.% Ni alloy and 7.3 and 9.1 K for the L21↔orthorhombic transformation in a Ni43Co7Mn39In11 alloy. These values were significantly smaller than those commonly reported in the literature. The experimental evidences also demonstrated that the apparent time dependences of the martensitic transformations manifested in DSC analysis were artifacts caused by instrumental thermal inertia.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
TABLE I.

References

  1. 1.

    I. Chakraborty, W.C. Tang, D.P. Bame, and T.K. Tang: MEMS micro-valve for space applications. Sens. Actuators 83, 188 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    D.D. Shin, D.G. Lee, K.P. Mohanchandra, and G.P. Carman: Thin film NiTi microthermostat array. Sens. Actuators A 130 /, 37 (2006).

    Article  Google Scholar 

  3. 3.

    G. Costanza, M.E. Tata, and C. Calisti: Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sens. Actuators,A 157, 113 (2009).

    Article  Google Scholar 

  4. 4.

    N.W. Botterill and D.M. Grant: Novel micro-thermal characterisation of thin film NiTi shape memory alloys. Mater. Sci. Eng. A 378, 424 (2004).

    Article  Google Scholar 

  5. 5.

    J. Ortin and A. Planes: Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformation. Acta Metall. 36, 1873 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    J. Ortin and A. Planes: Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37, 1433 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    G.B. Olson and M. Cohen: Thermoelastic behavior in martensitic transformaitons. Scr. Metall. 9, 1247 (1975).

    CAS  Article  Google Scholar 

  8. 8.

    G.B. Olson and M. Cohen: Reply to “On the equilibrium temperature in thermoelastic martensitic transformations.” Scr. Metall. 11, 345 (1977).

    CAS  Article  Google Scholar 

  9. 9.

    C.M. Wayman and H.C. Tong: On the equilibrium temperature in thermoelastic martensitic transformaitons. Scr. Metall. 11, 341 (1977).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Liu and P.G. McCormick: Thermodynamic analysis of the martensitic transformation in NiTi-I. Effect of heatreatment on transformation behaviour. Acta Metall. Mater. 42, 2401 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    J. Uchil, K.P. Mohanchandra, K. Ganesh Kumara, K.K. Mahesh, and T.P. Murali: Thermal expansion in various phases of nitinol using TMA. Phys. B 270, 289 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    T. Kakeshita, T. Takeguchi, T. Fukuda, and T. Saburi: Time-dependent nature of the athermal martensitic transformation in a Cu-Al-Ni shape memory alloy. Mater. Trans. JIM 37, 299 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    M. Kozuma, Y. Murakami, T. Kawano, and K. Otsuka: An isothermal martensitic transformaiton in a quenched Au-49.5at.% Cd alloy. Scr. Mater. 36, 253 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    K. Otsuka, X. Ren, and T. Takeda: Experimental test for a possible isothermal martensitic transformation in a Ti-Ni alloy. Scr. Mater. 45, 145 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    F. Chen, Y.X. Tong, B. Tian, Y.F. Zheng, and Y. Liu: Time effect of martensitic transformation in Ni43Co7Mn41Sn9. Intermetallics 18, 188 (2010).

    Article  Google Scholar 

  16. 16.

    L. Müller, U. Klemradt, and T.R. Finlayson: Time-dependent phenomena in athermal martensitic transformations. Mater. Sci. Eng. A 438, 122 (2006).

    Article  Google Scholar 

  17. 17.

    A. Planes, F.J. Pérez-Reche, E. Vives, and L. Mañosa: Kinetics of martensitic transformations in shape memory alloys. Scr. Mater. 50, 181 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, and M. Date: A new model explainable for both the athermal and isothermal natures of martensitic transformations in Fe-Ni-Mn alloys. Mater. Trans. JIM 34, 423 (1993).

    Article  Google Scholar 

  19. 19.

    V.K. Sharma, M.K. Chattopadhyay, and S.B. Roy: Kinetics arrest of the first order austenite to martensitic phase transition in Ni50Mn34In16: dc magnetization studies. Phys. Rev. B 76, 140401 (2007).

    Article  Google Scholar 

  20. 20.

    D.E. Laughlin, N.J. Jones, A.J. Schwartz, and T.B. Massalski: Thermally activated martensite: Its relationship to non-thermally activated (athermal) martensite. (ICOMAT, Santa Fe, NM, June 29–July 5, 2008).

    Google Scholar 

  21. 21.

    S. Kustov, D. Salas, R. Santamarta, E. Cesari, and J.V. Humbeeck: Isothermal and athermal martensitic transformations in B2-R-B19′ sequence in Ni-Ti shape memory alloys. Scr. Mater. 63, 1240 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Q.L. Meng, H. Yang, Y. Liu, and T. Nam: Transformation intervals and elastic strain energies of B2-B19’ martensitic transformation of NiTi. Intermetallics. 18, 2431 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    A.L. Roitburd and G.V. Kurdjumov: The nature of martensitic transformations. Mater. Sci. Eng. 39, 141 (1979).

    CAS  Article  Google Scholar 

  24. 24.

    P. Wollants, J.R. Roos, and L. Delaey: Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 37, 227 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    R.J. Salzbrenner and M. Cohen: On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 27, 739 (1979).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Liu and P.G. McCormick: Influence of heat treatment on the internal resistance to the martensitic transformation in NiTi. (ICOMAT-7, Monterey, CA, July 20–24, 1992).

    Google Scholar 

  27. 27.

    P.G. McCormick and Y. Liu: Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling. Acta Metall. Mater. 42, 2407 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K. Ishida: Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A. 38A, 759 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    J. Krumhansl: Landau models for structural phase transitions: Are soft modes needed? Solid State Commun. 84, 251 (1992).

    CAS  Article  Google Scholar 

  30. 30.

    W. Cao, J. Krumhansl, and R. Gooding: Defect-induced heterogeneous transformations and thermal growth in athermal martensite. Phys. Rev. B 41, 11319 (1990).

    CAS  Article  Google Scholar 

  31. 31.

    E. Vives, J. Ortín, L. Mañosa, I. Ràfols, R. Pérez-Magrané, and A. Planes: Distributions of avalanches in martensitic transformations. Phys. Rev. Lett. 72, 1694 (1994).

    CAS  Article  Google Scholar 

  32. 32.

    D.J. Sordelet, M.F. Besser, R.T. Ott, B.J. Zimmerman, W.D. Porter, and B. Gleeson: Isothermal nature of martensitic formation in Pt-modified β–TiAl alloys. Acta Mater. 55, 2433 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    K. Wakasa and C.M. Wayman: Isothermal martensite formation in an Fe-20%Ni-5%Mn alloy. Metallography 14, 37 (1981).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MEST) (KRF-2008-220-D00061).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yinong Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meng, Q., Yang, H., Liu, Y. et al. Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys. Journal of Materials Research 26, 1243–1252 (2011). https://doi.org/10.1557/jmr.2011.54

Download citation