Skip to main content
Log in

Nanoscale structure of Ti1−xNbyO2 mixed-phase thin films: Distribution of crystal phase and dopants

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (polycrystalline electron diffraction, nanoelectron diffraction, and energy dispersive x-ray spectroscopy) was used to determine the dispersion of crystal phase and Nb dopants in mixed-phase (anatase and rutile) Ti1−xNbyO2 thin films prepared by reactive sputtering. When co-sputtering mixed-phase TiO2 with a dopant, it is unclear how the crystal phases are distributed within thin film structures, what the dominant interfaces are, and how the dopant is distributed within the crystal phases. In the Ti1−xNbyO2 films, anatase and rutile grains were found to be homogeneously dispersed indicating that anatase/rutile interfaces are the dominant interfaces. Anatase/rutile interfaces are a critical feature of mixed-phase materials which impart high reactivity to the composite. Nb homogeneously dispersed at low concentrations, but at high concentrations, Nb segregated in the rutile phase. There is an apparent threshold beyond which Nb segregates according to its higher solubility in rutile due to a better lattice fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.

Similar content being viewed by others

References

  1. G.H. Li and K.A. Gray: The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173 (2007).

    Article  CAS  Google Scholar 

  2. G.H. Li, L. Chen, M.E. Graham, and K.A. Gray: A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. J. Mol. Catal. A: Chem. 275, 30 (2007).

    Article  CAS  Google Scholar 

  3. G.H. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh, and K.A. Gray: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 253, 105 (2008).

    Article  CAS  Google Scholar 

  4. L. Chen, M.E. Graham, G.H. Li, and K.A. Gray: Fabricating highly active mixed phase TiO2 photocatalysts by reactive dc magnetron sputter deposition. Thin Solid Films 515, 1176 (2006).

    Article  CAS  Google Scholar 

  5. D.C. Hurum, K.A. Gray, T. Rajh, and M.C. Thurnauer: Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 109, 977 (2005).

    Article  CAS  Google Scholar 

  6. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, and M.C. Thurnauer: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545 (2003).

    Article  CAS  Google Scholar 

  7. L. Chen, M.E. Graham, and K.A. Gray: Nitrogen stabilized reactive sputtering of optimized TiO2-x photocatalysts with visible light reactivity. J. Vac. Sci. Technol. A 27, 712 (2009).

    Article  CAS  Google Scholar 

  8. P.A. DeSario, L. Chen, M.E. Graham, and K.A. Gray: Non-stoichiometric mixed-phase titania thin films: Red-shifted photoresponse and enhanced reactivity. J. Vac. Sci. Technol. A 29 (2011).

  9. P.A. DeSario, M.E. Graham, R.M. Gelfand, and K.A. Gray: The effect of Nb substitution on the synthesis and photo-response of TiO2 thin films prepared by direct current magnetron sputtering. Thin Solid Films 519, 3562 (2011).

    Article  CAS  Google Scholar 

  10. M. Yang, D. Kim, H. Jha, K. Lee, J. Paul, and P. Schmuki: Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 47, 2032 (2011).

    Article  CAS  Google Scholar 

  11. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, and K. Koumoto: Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006).

    Article  Google Scholar 

  12. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).

    Article  Google Scholar 

  13. M. Sacerdoti, M.C. Dalconi, M.C. Carotta, B. Cavicchi, M. Ferroni, S. Colonna, and M.L. Di Vona: XAS investigation of tantalum and niobium in nanostructured TiO2 anatase. J. Solid State Chem. 177, 1781 (2004).

    Article  CAS  Google Scholar 

  14. J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J.R. Morante: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853 (2002).

    Article  CAS  Google Scholar 

  15. M.A. Gillispie, M. van Hest, M.S. Dabney, J.D. Perkins, and D.S. Ginley: Rf magnetron sputter deposition of transparent conducting Nb-doped TiO2 films on SrTiO3. J. Appl. Phys. 101, 033125 (2007).

    Article  Google Scholar 

  16. Y. Gao: In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1-xNbxO2 thin films by metal-organic chemical vapor deposition. Thin Solid Films 346, 73 (1999).

    Article  CAS  Google Scholar 

  17. L.E. Depero, L. Sangaletti, B. Allieri, E. Bontempi, R. Salari, M. Zocchi, C. Casale, and M. Notaro: Niobium-titanium oxide powders obtained by laser-induced synthesis: Microstructure and structure evolution from diffraction data. J. Mater. Res. 13, 1644 (1998).

    Article  CAS  Google Scholar 

  18. D. Morris, Y. Dou, J. Rebane, C.E.J. Mitchell, R.G. Egdell, D.S.L. Law, A. Vittadini, and M. Casarin: Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys. Rev. B 61, 13445 (2000).

    Article  CAS  Google Scholar 

  19. L. Sheppard, T. Bak, J. Nowotny, C.C. Sorrell, S. Kumar, A.R. Gerson, M.C. Barnes, and C. Ball: Effect of niobium on the structure of titanium dioxide thin films. Thin Solid Films 510, 119 (2006).

    Article  CAS  Google Scholar 

  20. Y. Furubayashi, N. Yamada, Y. Hirose, Y. Yamamoto, M. Otani, T. Hitosugi, T. Shimada, and T. Hasegawa: Transport properties of d-electron-based transparent conducting oxide: Anatase Ti1-xNbxO2. J. Appl. Phys. 101, 093705 (2007).

    Article  Google Scholar 

  21. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, Y. Hirose, G. Kinoda, K. Inaba, T. Shimada, and T. Hasegawa: Novel transparent conducting oxide: Anatase Ti1-xNbxO2. Thin Solid Films 496, 157 (2006).

    Article  CAS  Google Scholar 

  22. A.M. Ruiz, G. Dezanneau, J. Arbiol, A. Cornet, and J.R. Morante: Insights into the structural and chemical modifications of Nb additive on TiO2 nanoparticles. Chem. Mater. 16, 862 (2004).

    Article  CAS  Google Scholar 

  23. Y. Gao, Y. Liang, and S.A. Chambers: Synthesis and characterization of Nb-doped TiO2(110) surfaces by molecular beam epitaxy. Surf. Sci. 348, 17 (1996).

    Article  CAS  Google Scholar 

  24. S.A. Chambers, Y. Gao, S. Thevuthasan, Y. Liang, N.R. Shivaparan, and R.J. Smith: Molecular beam epitaxial growth and characterization of mixed (Ti,Nb)O2 rutile films on TiO2(100). J. Vac. Sci. Technol. A 14, 1387 (1996).

    Article  CAS  Google Scholar 

  25. M. Valigi, D. Cordischi, G. Minelli, P. Natale, P. Porta, and C.P. Keijzers: A structural, thermogravimetric, magnetic, electron-spin resonance, and optical reflectance study of the NbO2-TiO2 system. J. Solid State Chem. 77, 255 (1988).

    Article  CAS  Google Scholar 

  26. A. Ghicov, M. Yamamoto, and P. Schmuki: Lattice widening in niobium-doped TiO2 nanotubes: Efficient ion intercalation and swift electrochromic contrast. Angew. Chem. Int. Ed. 47, 7934 (2008).

    Article  CAS  Google Scholar 

  27. S.A. Chambers, Y. Gao, Y.J. Kim, M.A. Henderson, S. Thevuthasan, S. Wen, and K.L. Merkle: Geometric and electronic structure of epitaxial NbxTi1-xO2 on TiO2(110). Surf. Sci. 365, 625 (1996).

    Article  CAS  Google Scholar 

  28. D. Das Mulmi, T. Sekiya, N. Kamiya, S. Kurita, Y. Murakami, and T. Kodaira: Optical and electric properties of Nb-doped anatase TiO2 single crystal. J. Phys. Chem. Solids 65, 1181 (2004).

    Article  CAS  Google Scholar 

  29. W.D. Sproul, M.E. Graham, M.S. Wong, S. Lopez, D. Li, and R.A. Scholl: Reactive direct-current magnetron sputtering of aluminium-oxide coatings. J. Vac. Sci. Technol. A 13, 1188 (1995).

    Article  CAS  Google Scholar 

  30. L. Chen, M.E. Graham, G.H. Li, D.R. Gentner, N.M. Dimitrijevic, and K.A. Gray: Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films 517, 5641 (2009).

    Article  CAS  Google Scholar 

  31. K. Sakata: Study of phase transition in NbxTi1-xO2. J. Phys. Soc. Jpn. 26, 1067 (1969).

    Article  CAS  Google Scholar 

  32. B.O. Marinder and A. Magneli: Rutile-type phases in some systems of mixed transition metal dioxides. Acta Chem. Scand. 12, 1345 (1958).

    Article  CAS  Google Scholar 

  33. M.R. Antonio, I. Song, and H. Yamada: Coordination and valence of niobium in TiO2–NbO2 solid-solutions through x-ray absorption-spectroscopy. J. Solid State Chem. 93, 183 (1991).

    Article  CAS  Google Scholar 

  34. C.N. Zhang, M. Ikeda, T. Uchikoshi, J.G. Li, T. Watanabe, and T. Ishigaki: High-concentration niobium (V) doping into TiO2 nanoparticles synthesized by thermal plasma processing. J. Mater. Res. 26, 658 (2011).

    Article  CAS  Google Scholar 

  35. H.Z. Zhang and J.F. Banfield: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15, 437 (2000).

    Article  CAS  Google Scholar 

  36. P.I. Gouma and M.J. Mills: Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 84, 619 (2001).

    Article  CAS  Google Scholar 

  37. S.B. Aldabergenova, A. Ghicov, S. Albu, J.M. Macak, and P. Schmuki: Smooth titania nanotubes: Self-organization and stabilization of anatase phase. J. Non-Cryst. Solids 354, 2190 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided for this study from the NSF Grant no. CBET-0829146 is gratefully acknowledged. The characterization (XRD, TEM, and SEM) was performed in the JB Cohen x-ray facility and the NUANCE research centers at Northwestern University. We also thank Matthew K. Waltz for his assistance with image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSario, P.A., Wu, J., Grahm, M.E. et al. Nanoscale structure of Ti1−xNbyO2 mixed-phase thin films: Distribution of crystal phase and dopants. Journal of Materials Research 27, 944–950 (2012). https://doi.org/10.1557/jmr.2011.449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.449

Navigation