Light harvesting in dendrimer materials: Designer photophysics and electrodynamics

Abstract

Multichromophoric dendrimers are increasingly being considered for solar energy systems. To design materials with suitably efficient photon collection demands a thorough understanding of crucial photophysical conditions and electrodynamic mechanisms, many of which prove to emulate photosynthetic systems. Key parameters include the chromophore absorption properties, the generation, branching and folding of the dendrimer, and the presence of a spectroscopic gradient. Driving excitation towards a trap, resonance energy transfer favors migration between nearest neighbor chromophores. In modeling the progress of excitation from antenna chromophores towards the trap, a propensity matrix method has broad applicability, giving physical insights of generic validity. Calculations on specific dendrimers are best served by quantum chemistry models; again, links with photobiological systems can be discerned. Two important optically nonlinear features are cooperative energy pooling, and two-photon energy transfer. Branch multiplicity and the polar or polarizable nature of the chromophores also play important roles in determining energy harvesting characteristics.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

REFERENCES

  1. 1.

    M.Z. Jacobson: Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009) [doi: 10.1039/B809990C].

    CAS  Article  Google Scholar 

  2. 2.

    D.L. Andrews, C. Curutchet, and G.D. Scholes: Resonance energy transfer: Beyond the Limits. Laser Photonics Rev. 5, 114–123 (2011) [doi: 10.1002/lpor.201000004].

    CAS  Article  Google Scholar 

  3. 3.

    D. Beljonne, C. Curutchet, G.D. Scholes, and R.J. Silbey: Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009) [doi: 10.1021/jp900708f].

    CAS  Article  Google Scholar 

  4. 4.

    Y.C. Cheng and G.R. Fleming: Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009) [doi: 10.1146/annurev.physchem.040808.090259].

    CAS  Article  Google Scholar 

  5. 5.

    D.L. Andrews: Energy Harvesting Materials (World Scientific, New Jersey, 2005).

    Google Scholar 

  6. 6.

    G.M. Dykes: Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol. 76, 903–918 (2001) [doi: 10.1002/jctb.464].

    CAS  Article  Google Scholar 

  7. 7.

    A. Adronov and J.M.J. Fréchet: Light-harvesting dendrimers. Chem. Commun. 1701–1710 (2000) [doi:10.1039/b005993p].

    Google Scholar 

  8. 8.

    A. Archut and G. Vögtle: Functional cascade molecules. Chem. Soc. Rev. 27, 233–240 (1998) [doi:10.1039/a827233z].

    CAS  Article  Google Scholar 

  9. 9.

    T. Minami, S. Tretiak, V. Chernyak, and S. Mukamel: Frenkel-exciton Hamiltonian for dendrimeric nanostar. J. Lumin. 87, 115–118 (2000) [doi:10.1016/S0022-2313(99)00242-2].

    Article  Google Scholar 

  10. 10.

    V. Balzani, P. Ceroni, M. Maestri, and V. Vincinelli: Light-harvesting dendrimers. Curr. Opin. Chem. Biol. 7, 657–665 (2003) [doi:10.1016/j.cbpa.2003.10.001].

    CAS  Article  Google Scholar 

  11. 11.

    M.I. Ranasinghe, O.P. Varnavski, J. Pawlas, S.I. Hauck, J. Louie, J.F. Hartwig, and T. Goodson III: Femtosecond excitation energy transport in triarylamine dendrimers. J. Am. Chem. Soc. 124, 6520–6521 (2002) [doi:10.1021/ja025505z].

    CAS  Article  Google Scholar 

  12. 12.

    C. Katan, F. Terenziani, O. Mongin, M.H.V. Werts, L. Porres, T. Pons, J. Mertz, S. Tretiak, and M. Blanchard-Desce: Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption. J. Phys. Chem. A 109, 3024–3037 (2005) [doi: 10.1021/jp044193e].

    CAS  Article  Google Scholar 

  13. 13.

    P.L. Burn, S.C. Lo, and I.D.W. Samuel: The development of light-emitting dendrimers for displays. Adv. Mater. 19, 1675–1688 (2007) [doi: 10.1002/adma.200601592].

    CAS  Article  Google Scholar 

  14. 14.

    P.M.R. Paulo, J.N.C. Lopes, and S.M.B. Costa: Molecular dynamics simulations of charged dendrimers: Low-to-intermediate half-generation PAMAMs. J. Phys. Chem. B 111, 10651–10664 (2007) [doi: 10.1021/jp072211x].

    CAS  Article  Google Scholar 

  15. 15.

    E. Badaeva, M.R. Harpham, R. Guda, O. Suzer, C.Q. Ma, P. Bauerle, T. Goodson, and S. Tretiak: Excited-state structure of oligothiophene dendrimers: Computational and experimental study. J. Phys. Chem. B 114, 15808–15817 (2010) [doi: 10.1021/jp109624d].

    CAS  Article  Google Scholar 

  16. 16.

    J.K. Gao, Y.J. Cui, J.C. Yu, W.X. Lin, Z.Y. Wang, and G.D. Qian: Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. J. Mater. Chem. 21, 3197–3203 (2011) [doi: 10.1039/c0jm03367g].

    CAS  Article  Google Scholar 

  17. 17.

    J.L. Palma, E. Atas, L. Hardison, T.B. Marder, J.C. Collings, A. Beeby, J.S. Melinger, J.L. Krause, V.D. Kleiman, and A.E. Roitberg: Electronic spectra of the nanostar dendrimer: Theory and experiment. J. Phys. Chem. C 114, 20702–20712 (2010) [doi: 10.1021/jp1062918].

    CAS  Article  Google Scholar 

  18. 18.

    V. Balzani and F. Vögtle: Dendrimers as luminescent hosts for metal cations and organic molecules. C.R. Chim. 6, 867–872 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    T. Goodson, O. Varnavski, and Y. Wang: Optical properties and applications of dendrimer-metal nanocomposites. Int. Rev. Phys. Chem. 23, 109–150 (2004) [doi: 10.1080/01442350310001628875].

    CAS  Article  Google Scholar 

  20. 20.

    J. Larsen, F. Puntoriero, T. Pascher, N. McClenaghan, S. Campagna, E. Åkesson, and V. Sundström: Extending the light-harvesting properties of transition-metal dendrimers. ChemPhysChem 8, 2643–2651 (2007) [doi:10.1002/cphc.200700539].

    CAS  Article  Google Scholar 

  21. 21.

    C. Giansante, P. Ceroni, V. Balzani, and F. Vögtle: Self-assembly of a light-harvesting antenna formed by a dendrimer, a RuII complex, and a NdIII ion. Angew. Chem. Int. Ed. 47, 5422–5425 (2008) [doi:10.1002/anie.200801334].

    CAS  Article  Google Scholar 

  22. 22.

    M. Kralj and K. Pavelic: Medicine on a small scale. EMBO Rep. 4, 1008–1012 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    P. Ball: Natural strategies for the molecular engineer. Nanotechnology 13, R15–R28 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    D.L. Andrews: Optical energy harvesting materials, in Introduction to Complex Mediums for Optics and Electromagnetics, edited by W.S. Weiglhofer and A. Lakhtakia (SPIE, Bellingham, WA, 2003), pp. 141–163.

    Google Scholar 

  25. 25.

    D.L. Andrews: Energy harvesting: A review of the interplay between structure and mechanism. J. Nanophotonics 2, 022502 (2008) [doi: 10.1117/1.2976172].

    Article  CAS  Google Scholar 

  26. 26.

    M.R. Shortreed, S.F. Swallen, Z.Y. Shi, W.H. Tan, Z.F. Xu, C. Devadoss, J.S. Moore, and R. Kopelman: Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101, 6318–6322 (1997) [doi:10.1021/jp9705986].

    Article  Google Scholar 

  27. 27.

    A. Bar-Haim and J. Klafter: Dendrimers as light-harvesting antennae. J. Lumin. 76, 197–200 (1998) [doi:10.1016/S0022-2313(97)00150-6].

    Article  Google Scholar 

  28. 28.

    A. Bar-Haim and J. Klafter: Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B 102, 1662–1664 (1998) [doi:10.1021/jp980174r].

    CAS  Article  Google Scholar 

  29. 29.

    S.F. Swallen, Z.Y. Shi, W. Tan, Z. Xu, J.S. Moore, and R. Kopelman: Exciton localisation hierarchy and directed energy transfer in conjugated linear aromatic chains and dendrimeric supermolecules. J. Lumin. 76, 193–196 (1998) [doi:10.1016/S0022-2313(97)00149-X].

    Article  Google Scholar 

  30. 30.

    P.G. van Patten, A.P. Shreve, J.S. Lindsey, and R.J. Donohoe: Energy-transfer modeling for the rational design of multiporphyrin light-harvesting arrays. J. Phys. Chem. B 102, 4209–4216 (1998) [doi:10.1021/jp972304m].

    Article  Google Scholar 

  31. 31.

    D. Gust, T.A. Moore and A.N. Moore: Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    D.M. Guldi and N. Martin: Functionalized fullerenes: Synthesis and functions in Comprehensive Nanoscience and Technology, Vol. 5, edited by D.L. Andrews, G.D. Scholes, and G.P. Wiederrecht (Academic, San Diego, CA, 2011), pp. 379–398.

    Article  Google Scholar 

  33. 33.

    U. Hahn, M. Gorka, F. Vögtle, V. Vicinelle, P. Ceroni, M. Maestri, and V. Balzani: Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew. Chem. Int. Ed. 41, 3595–3598 (2002) [doi:10.1002/1521-3773(20021004)41:19<3595::AID-ANIE3595>3.0.CO;2-B].

    CAS  Article  Google Scholar 

  34. 34.

    S. Tretiak, V. Chernyak, and S. Mukamel: Localized electronic excitations in phenylacetylene dendrimers. J. Phys. Chem. B 102, 3310–3315 (1998) [doi:10.1021/jp980745f].

    CAS  Article  Google Scholar 

  35. 35.

    E.Y. Poliakov, V. Chernyak, S. Tretiak, and S. Mukamel: Exciton-scaling and optical excitations of self-similar phenylacetylene dendrimers. J. Chem. Phys. 110, 8161–8175 (1999) [doi: 10.1063/1.478730].

    CAS  Article  Google Scholar 

  36. 36.

    J.S. Avery: Resonance energy transfer and spontaneous photon emission. Proc. Phys. Soc. 88, 1–8 (1966) [doi: 10.1088/0370-1328/88/1/302].

    CAS  Article  Google Scholar 

  37. 37.

    L. Gomberoff and E.A. Power: The resonance transfer of excitation. Proc. Phys. Soc. 88, 281–284 (1966) [doi: 10.1088/0370-1328/88/2/302].

    CAS  Article  Google Scholar 

  38. 38.

    D.P. Craig and T. Thirunamachandran: Molecular Quantum Electrodynamics. An Introduction to Radiation Molecule Interactions (Dover, New York, 1998), pp. 144–149.

    Google Scholar 

  39. 39.

    G. Juzeliunas and D.L. Andrews: Quantum electrodynamics of resonance energy transfer. Adv. Chem. Phys. 112, 357–410 (2000).

    CAS  Google Scholar 

  40. 40.

    D.L. Andrews and D.S. Bradshaw: Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach. Eur. J. Phys. 25, 845–858 (2004) [doi: 10.1088/0143-0807/25/6/017].

    Article  Google Scholar 

  41. 41.

    A. Salam: Molecular Quantum Electrodynamics. Long- Range Intermolecular Interactions (Wiley, New York, 2010), Chap. 4.

    Google Scholar 

  42. 42.

    C. Galli, K. Wynne, S.M. Lecours, M.J. Therien, and R.M. Hochstrasser: Direct measurement of electronic dephasing using anisotropy. Chem. Phys. Lett. 206, 493–499 (1993) [doi:10.1016/0009-2614(93)80174-N].

    CAS  Article  Google Scholar 

  43. 43.

    B.W. van der Meer: in Resonance Energy Transfer, edited by D.L. Andrews and A.A. Demidov (Wiley, New York, 1999), pp. 151–172.

  44. 44.

    T. Förster: The migration of energy between molecules and fluorescence. Ann. Phys. 2, 55–75 (1948) [doi:10.1002/andp.19484370105].

    Article  Google Scholar 

  45. 45.

    D.L. Andrews and J. Rodríguez: Resonance energy transfer: Spectral overlap, efficiency and direction. J. Chem. Phys. 127, 084509 (2007) [doi:10.1063/1.2759489].

    Article  CAS  Google Scholar 

  46. 46.

    D.L. Andrews and S.P. Li: Energy flow in dendrimers: An adjacency matrix representation. Chem. Phys. Lett. 433, 239–243 (2006) [doi: 10.1016/j.cplett.2006.11.049].

    CAS  Article  Google Scholar 

  47. 47.

    D.L. Andrews, S.P. Li, J. Rodrìguez, and J. Slota: Development of the energy flow in light-harvesting dendrimers. J. Chem. Phys. 127, 134902 (2007) [doi: 10.1063/1.2785175].

    Article  CAS  Google Scholar 

  48. 48.

    D.L. Andrews, J. Rodrìguez, D.S. Bradshaw, and S.C. Wells: Alternative resonance energy transfer mechanisms in polymer light harvesting, in Energy Harvesting—Molecules and Materials, edited by D.L. Andrews, K.P. Ghiggino, T. Goodson III, and A.J. Nozik. (Mater. Res. Soc. Symp. Proc. 1120E, Warrendale, PA, 2009) 1120-M03-05, doi: 10.1557/PROC-1120-M03-05.

  49. 49.

    G.D. Scholes, X.J. Jordanides, and G.R. Fleming: Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 105, 1640–1651 (2001) [doi: 10.1021/jp003571m].

    CAS  Article  Google Scholar 

  50. 50.

    X.J. Jordanides, G.D. Scholes, and G.R. Fleming: The mechanism of energy transfer in the bacterial photosynthetic reaction center. J. Phys. Chem. B 105, 1652–1669 (2001) [doi: 10.1021/jp003572e].

    CAS  Article  Google Scholar 

  51. 51.

    K.F. Wong, B. Bagchi, and P.J. Rossky: Distance and orientation dependence of excitation transfer rates in conjugated systems: Beyond the Förster theory. J. Phys. Chem. A 108, 5752–5763 (2004) [doi: 10.1021/jp03772].

    CAS  Article  Google Scholar 

  52. 52.

    M. Nakano, R. Kishi, N. Nakagawa, T. Nitta, and K. Yamaguchi: Quantum master equation approach to the second hyperpolarizability of nanostar dendritic systems. J. Phys. Chem. B 109, 7631–7636 (2005) [doi: 10.1021/jp044599r].

    CAS  Article  Google Scholar 

  53. 53.

    S. Jang, Y.-C. Cheng, D.R. Reichman, and J.D. Eaves: Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008) [doi: 10.1063/1.2977974].

    Article  CAS  Google Scholar 

  54. 54.

    J.H. Kim and J. Cao: Optimal efficiency of self-assembling light-harvesting arrays. J. Phys. Chem. B 114, 16189–16197 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    A. Ishizaki and G.R. Fleming: Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009) [doi: 10.1063/1.3155372].

    Article  CAS  Google Scholar 

  56. 56.

    A. Ishizaki and G.R. Fleming: On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009) [doi: 10.1063/1.3155214].

    Article  CAS  Google Scholar 

  57. 57.

    E.K.L. Yeow, K.P. Ghiggino, J.N.H. Reek, M.J. Crossley, A.W. Bosman, A.P.H.J. Schenning, and E.W. Meijer: The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy. J. Phys. Chem. B 104, 2596–2606 (2000) [doi: 10.1021/jp993116u].

    CAS  Article  Google Scholar 

  58. 58.

    H. Zhu, V. May, and B. Röder: Mixed quantum classical simulations of electronic excitation energy transfer: The pheophorbide-a DAB dendrimer P4 in solution. Chem. Phys. 351, 117–128 (2008) [doi: 10.1016/j.chemphys.2008.04.009].

    CAS  Article  Google Scholar 

  59. 59.

    J. Megow, B. Röder, A. Kulesza, V. Bonacic-Koutecký, and V. May: A mixed quantum–classical description of excitation energy transfer in supramolecular complexes: Förster theory and beyond. ChemPhysChem 12, 645–656 (2011) [DOI: 10.1002/cphc.201000857].

    CAS  Article  Google Scholar 

  60. 60.

    S. Fernandez-Alberti, V.D. Kleiman, S. Tretiak, and A.E. Roitberg: Nonadiabatic molecular dynamics simulations of the energy transfer between building blocks in a phenylene ethynylene dendrimer ”, J. Phys. Chem. A 113, 7535–7542 (2009) [doi: 10.1021/jp900904q].

    CAS  Article  Google Scholar 

  61. 61.

    A. Muñoz-Losa, C. Curutchet, I. Fdez Galván, and B. Mennucci: Quantum mechanical methods applied to excitation energy transfer: A comparative analysis on excitation energies and electronic couplings. J. Chem. Phys. 21, 034104 (2008) [doi:10.1063/1.2953716].

    Article  CAS  Google Scholar 

  62. 62.

    D.L. Andrews and G.A. Jones: Primary photonic processes in energy harvesting: Quantum dynamical analysis of exciton energy transfer over three-dimensional dendrimeric geometries, in Energy Harvesting—Recent Advances in Materials, Devices and Applications, edited by R. Venkatasubramanian, H.B. Radousky, and H. Liang. (Mater. Res. Soc. Symp. Proc. 1325, Warrendale, PA, 2011) mrss11-1325-e05-01, DOI:10.1557/opl.2011.846.

  63. 63.

    G.A. Jones, A. Acocella, and F. Zerbetto: Nonlinear optical properties of C60 with explicit time-dependent electron dynamics. Theor. Chem. Acc. 118, 99–106 (2007) [doi: 10.1007/s00214-007-0251-4].

    CAS  Article  Google Scholar 

  64. 64.

    A. Acocella, G.A. Jones, and F. Zerbetto: What is adenine doing in photolyase? J. Phys. Chem. B 114, 4101–4106 (2010) [doi: 10.1021/jp101093z].

    CAS  Article  Google Scholar 

  65. 65.

    G.A. Jones, A. Acocella, and F. Zerbetto: On-the-fly, electric-field-driven, coupled electron-nuclear dynamics. J. Phys. Chem. A 112, 9650–9656 (2008) [doi: 10.1021/jp805360v].

    CAS  Article  Google Scholar 

  66. 66.

    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical Recipes. The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, 2007), p. 1049.

    Google Scholar 

  67. 67.

    G. Ashkenazi, R. Kosloff, and M.A. Ratner: Photoexcited electron transfer: Short-time dynamics and turnover control by dephasing, relaxation, and mixing. J. Am. Chem. Soc. 121, 3386–3395 (1999) [10.1021/ja981998p].

    CAS  Article  Google Scholar 

  68. 68.

    G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.-C. Cheng, R.E. Blankenship, and G.R. Fleming: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007) [doi: 10.1038/nature05678].

    CAS  Article  Google Scholar 

  69. 69.

    H. Lee, Y.C. Cheng, and G.R. Fleming: Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007) [doi: 10.1126/science.1142188].

    CAS  Article  Google Scholar 

  70. 70.

    E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, and G.D. Scholes: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 664–669 (2010) [doi: 10.1038/nature08811].

    Article  CAS  Google Scholar 

  71. 71.

    A. Ishizaki, T.R. Calhoun, G.S. Schlau-Cohen, and G.R. Fleming: Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12 7319–7337 (2010).

    CAS  Article  Google Scholar 

  72. 72.

    E.N. Zimanyi and R.J. Silbey: Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. J. Chem. Phys. 133, 144107 (2010).

    Article  CAS  Google Scholar 

  73. 73.

    M. Drobizhev, A. Karotki, A. Rebane, and C.W. Spangler: Dendrimer molecules with record large two-photon absorption cross section. Opt. Lett. 26, 1081–1083 (2001).

    CAS  Article  Google Scholar 

  74. 74.

    C.E. Powell, J.P. Morrall, S.A. Ward, M.P. Cifuentes, E.G.A. Notaras, M. Samoc, and M.G. Humphrey: Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer. J. Amer. Chem. Soc. 126, 12234–12235 (2004).

    CAS  Article  Google Scholar 

  75. 75.

    Y. Wang, X. Xie, and T. Goodson III: Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites. Nano Lett. 5, 2379–2384 (2005).

    CAS  Article  Google Scholar 

  76. 76.

    M.J. Cho, D.H. Choi, P.A. Sullivan, A.J.P. Akelaitis, and L.R. Dalton: Recent progress in second-order nonlinear optical polymers and dendrimers. Progr. Polymer Sci. 33, 1013–1058 (2008).

    CAS  Article  Google Scholar 

  77. 77.

    A. Narayanan, O. Varnavski, O. Mongin, J.P. Majoral, M. Blanchard-Desce, and T. Goodson III: Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing. Nanotechnology 19, 115502 (2008).

    Article  CAS  Google Scholar 

  78. 78.

    B. Xu, H. Fang, F. Chen, H. Lu, J. He, Y. Li, Q. Chen, H. Sun, and W. Tian: Synthesis, characterization, two-photon absorption, and optical limiting properties of triphenylamine-based dendrimers. New J. Chem. 33, 2457–2464 (2009).

    CAS  Article  Google Scholar 

  79. 79.

    Z. Li, W. Wu, Q. Li, G. Yu, L. Xiao, Y. Liu, C. Ye, J. Qin, and Z. Li: High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed. 122, 2823–2827 (2010).

    Article  Google Scholar 

  80. 80.

    M.R. Parida and C. Vijayan: Linear and nonlinear optical properties of dendrimer-based nanoclusters. Proc. SPIE 7774, 77740U (2010).

    Article  CAS  Google Scholar 

  81. 81.

    X. Zhang, C. Wang, X. Lu, and Y. Zeng: Nonlinear optical response of liquid crystalline azo-dendrimer in picosecond and cw regimes, J. Appl. Polym. Sci. 120, 3065–3070 (2011).

    CAS  Article  Google Scholar 

  82. 82.

    Z.-Q. Yan, B. Xu, Y.-J. Dong, W.-J. Tian, and A.-W. Li: The photophysical properties and two-photon absorption of novel triphenylamine-based dendrimers. Dyes Pigm. 90, 269–274 (2011).

    CAS  Article  Google Scholar 

  83. 83.

    T. Aida, D. Jiang, E. Yashima and Y. Okamoto: A new approach to light-harvesting with dendritic antenna. Thin Solid Films 331, 254–258 (1998) [doi:10.1016/S0040-6090(98)00927-4].

    CAS  Article  Google Scholar 

  84. 84.

    D.L. Andrews, D.S. Bradshaw, R.D. Jenkins, and J. Rodríguez: Dendrimer light-harvesting: Intramolecular electrodynamics and mechanisms. Dalton Trans. 10006–10014 (2009) [doi: 10.1039/b908675g].

    Google Scholar 

  85. 85.

    D.L. Andrews and D.S. Bradshaw: Optically nonlinear energy transfer in light-harvesting dendrimers. J. Chem. Phys. 121, 2445–2454 (2004).

    CAS  Article  Google Scholar 

  86. 86.

    A. Rebane, M. Drobizhev, C.W. Spangler, N. Christensson, and Y. Stepanenko: Quantum interference by femtosecond multiphoton absorption in conjugated dendrimers. Proc. SPIE 5934, 59340L (2005).

    Article  CAS  Google Scholar 

  87. 87.

    P. Huo and D.F. Coker: Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. J. Chem. Phys. 133, 184108 (2010).

    CAS  Article  Google Scholar 

  88. 88.

    V. May: Higher-order processes of excitation energy transfer in supramolecular complexes: Liouville space analysis of bridge molecule mediated transfer and direct photon exchange. J. Chem. Phys. 129, 114109 (2008).

    Article  CAS  Google Scholar 

  89. 89.

    V. May: Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems. Dalton Trans. 10086–10105 (2009).

    Google Scholar 

  90. 90.

    G.J. Daniels and D.L. Andrews: The electronic influence of a third body on resonance energy transfer. J. Chem. Phys. 116, 6701–6712 (2002).

    CAS  Article  Google Scholar 

  91. 91.

    D.L. Andrews and J.M. Leeder: Resonance energy transfer: When a dipole fails. J. Chem. Phys. 130, 184504 (2009).

    Article  CAS  Google Scholar 

  92. 92.

    Y. Zeng, Y.Y. Li, J. Chen, G. Yang, and Y. Li: Dendrimers: A mimic natural light-harvesting system. Chem. Asian J. 5, 992–1005 (2010).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Dr. Garth Jones for helpful comments. The reported work from the quantum electrodynamics group at UEA is funded by the University, and by the Science and Engineering Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David L. Andrews.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrews, D.L. Light harvesting in dendrimer materials: Designer photophysics and electrodynamics. Journal of Materials Research 27, 627–638 (2012). https://doi.org/10.1557/jmr.2011.436

Download citation