Skip to main content
Log in

Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Although atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultrathin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. M. Ahonen, M. Pessa, and T. Suntola: A study of ZnTe films grown on glass substrates using an atomic layer evaporation method. Thin Solid Films 65, 301 (1980).

    Article  CAS  Google Scholar 

  2. M. Leskela and M. Ritala: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548 (2003).

    Article  CAS  Google Scholar 

  3. R.L. Puurunen: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).

    Article  CAS  Google Scholar 

  4. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  5. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki: A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging, in Proceedings of the IEDM Technical Digest, 2007, pp. 247–250.

    Google Scholar 

  6. M.T. Bohr, R.S. Chau, T. Ghani, and K. Mistry: The high-k solution. IEEE Spectr. 44, 29 (2007).

    Article  Google Scholar 

  7. R.L. Puurunen: Growth per cycle in atomic layer deposition: A theoretical model. Chem. Vap. Deposition 10, 124 (2004).

    Article  CAS  Google Scholar 

  8. B.S. Lim, A. Rahtu, and R.G. Gordon: Atomic layer deposition of transition metals. Nat. Mater. 2, 749 (2003).

    Article  CAS  Google Scholar 

  9. M. Maarit Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä: Plasma-enhanced atomic layer deposition of silver thin films. Chem. Mater. 23, 2901 (2011).

    Article  CAS  Google Scholar 

  10. M. Ritala and M. Leskela: Handbook of Thin Film Materials (Academic Press, San Diego, 2001).

    Google Scholar 

  11. M. Leskela and M. Ritala: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).

    Article  CAS  Google Scholar 

  12. H. Kim: Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B 21, 2231 (2003).

    Article  CAS  Google Scholar 

  13. L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen, and M. Nieminen: Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys. Status Solidi A 201, 1443 (2004).

    Article  CAS  Google Scholar 

  14. M. Knez, K. Niesch, and L. Niinistoe: Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425 (2007).

    Article  CAS  Google Scholar 

  15. H. Kim, H-B-R. Lee, and W.J. Maeng: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563 (2009).

    Article  CAS  Google Scholar 

  16. G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  17. R.H. Ritchie: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).

    Article  CAS  Google Scholar 

  18. W.L. Barnes, A. Dereux, and T.W. Ebbesen: Surface plasmon subwavelength optics. Nature 424, 824 (2003).

    Article  CAS  Google Scholar 

  19. H. Atwater: The promise of plasmonics. Sci. Am. 296, 56 (2007).

    Article  CAS  Google Scholar 

  20. A. Polman: Plasmonics applied. Science 322, 868 (2008).

    Article  Google Scholar 

  21. S. Lal, S. Link, and N.J. Halas: Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641 (2007).

    Article  CAS  Google Scholar 

  22. M. Pelton, J. Aizpurua, and G. Bryant: Metal-nanoparticle plasmonics. Laser Photonics Rev. 2, 136 (2008).

    Article  CAS  Google Scholar 

  23. L. Novotny: From near-field optics to optical antennas. Phys. Today 64, 47 (2011).

    Article  Google Scholar 

  24. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  25. J. Homola: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462 (2008).

    Article  CAS  Google Scholar 

  26. M.A. Cooper: Advances in membrane receptor screening and analysis. J. Mol. Recognit. 17, 286 (2004).

    Article  CAS  Google Scholar 

  27. S.H. Armstrong Jr. and M.J.E. Budka: Preparation and properties of serum and plasma proteins; the refractive properties of the proteins of human plasma and certain purified fractions. J. Am. Chem. Soc. 69, 1747 (1947).

    Article  CAS  Google Scholar 

  28. J. Voros: The density and refractive index of adsorbing protein layers. Biophys. J. 87, 553 (2004).

    Article  CAS  Google Scholar 

  29. L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee: Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636 (1998).

    Article  CAS  Google Scholar 

  30. A.V. Whitney, J.W. Elam, S.L. Zou, A.V. Zinovev, P.C. Stair, G.C. Schatz, and R.P. Van Duyne: Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition. J. Phys. Chem. B 109, 20522 (2005).

    Article  CAS  Google Scholar 

  31. H. Im, N.C. Lindquist, A. Lesuffleur, and S.H. Oh: Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 4, 947 (2010).

    Article  CAS  Google Scholar 

  32. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998).

    Article  CAS  Google Scholar 

  33. A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813 (2004).

    Article  CAS  Google Scholar 

  34. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D.S. Sutherland, and F. Höök: Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc. 127, 5043 (2005).

    Article  CAS  Google Scholar 

  35. K.A. Tetz, L. Pang, and Y. Fainman: High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 31, 1528 (2006).

    Article  Google Scholar 

  36. M.E. Stewart, N.H. Mack, V. Malyarchuk, J. Soares, T.W. Lee, S.K. Gray, R.G. Nuzzo, and J.A. Rogers: Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006).

    Article  CAS  Google Scholar 

  37. A. Lesuffleur, H. Im, N.C. Lindquist, and S.H. Oh: Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl. Phys. Lett. 90, 243110 (2007).

    Article  CAS  Google Scholar 

  38. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E.M. Girotto, A.G. Brolo, R. Gordon, and D. Sinton: Nanoholes as nanochannels: Flow-through plasmonic sensing. Anal. Chem. 81, 4308 (2009).

    Article  CAS  Google Scholar 

  39. H. Im, A. Lesuffleur, N.C. Lindquist, and S.H. Oh: Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal. Chem. 81, 2854 (2009).

    Article  CAS  Google Scholar 

  40. N.C. Lindquist, A. Lesuffleur, H. Im, and S.H. Oh: Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9, 382 (2009).

    Article  CAS  Google Scholar 

  41. X.D. Yang, C.J. Chen, C.A. Husko, and C.W. Wong: Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition. Appl. Phys. Lett. 91, 161114 (2007).

    Article  CAS  Google Scholar 

  42. L.H. Qian, B. Shen, G.W.W. Qin, and B. Das: Widely tuning optical properties of nanoporous gold-titania core-shells. J. Chem. Phys. 134, 014707 (2011).

    Article  CAS  Google Scholar 

  43. D.L. Jeanmaire and R.P. Van Duyne: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1 (1977).

    Article  CAS  Google Scholar 

  44. J.A. Dieringer, A.D. McFarland, N.C. Shah, D.A. Stuart, A.V. Whitney, C.R. Yonzon, M.A. Young, X.Y. Zhang, and R.P. Van Duyne: Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9 (2006).

    Article  CAS  Google Scholar 

  45. M.D. Groner, S.M. George, R.S. McLean, and P.F. Carcia: Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 88, 051907 (2006).

    Article  CAS  Google Scholar 

  46. M.D. Groner, F.H. Fabreguette, J.W. Elam, and S.M. George: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639 (2004).

    Article  CAS  Google Scholar 

  47. A.V. Whitney, J.W. Elam, P.C. Stair, and R.P. Van Duyne: Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. C 111, 16827 (2007).

    Article  CAS  Google Scholar 

  48. J. Sung, K.M. Kosuda, J. Zhao, J.W. Elam, K.G. Spears, and R.P. Van Duyne: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation. J. Phys. Chem. C 112, 5707 (2008).

    Article  CAS  Google Scholar 

  49. C.A. Barrios, A.V. Malkovskiy, A.M. Kisliuk, A.P. Sokolov, and M.D. Foster: Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J. Phys. Chem. C 113, 8158 (2009).

    Article  CAS  Google Scholar 

  50. X.Y. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, and R.P. Van Duyne: Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304 (2006).

    Article  CAS  Google Scholar 

  51. P. Nagpal, N.C. Lindquist, S.H. Oh, and D.J. Norris: Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009).

    Article  CAS  Google Scholar 

  52. H. Im, S.H. Lee, N.J. Wittengerg, T.W. Johnson, N.C. Lindquist, P. Nagpal, D.J. Norris, and S.H. Oh: Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5, 6244 (2011).

    Article  CAS  Google Scholar 

  53. S.M. George, A.W. Ott, and J.W. Klaus: Surface chemistry for atomic layer growth. J. Phys. Chem. 100, 13121 (1996).

    Article  CAS  Google Scholar 

  54. C.L. Haynes, A.D. McFarland, and R.P. Van Duyne: Surface-enhanced Raman spectroscopy. Anal. Chem. 77, 338A (2005).

    Article  CAS  Google Scholar 

  55. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).

    Article  CAS  Google Scholar 

  56. S.M. Nie and S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

  57. H. Im, K.C. Bantz, N.C. Lindquist, C.L. Haynes, and S.H. Oh: Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 10, 2231 (2010).

    Article  CAS  Google Scholar 

  58. D. Hausmann, J. Becker, S.L. Wang, and R.G. Gordon: Rapid vapor deposition of highly conformal silica nanolaminates. Science 298, 402 (2002).

    Article  CAS  Google Scholar 

  59. H. Im, N.J. Wittenberg, A. Lesuffleur, N.C. Lindquist, and S.H. Oh: Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688 (2010).

    Article  CAS  Google Scholar 

  60. C.A. Keller and B. Kasemo: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  61. T.H. Anderson, Y. Min, K.L. Weirich, H. Zeng, D. Fygenson, and J.N. Israelachvili: Formation of supported bilayers on silica substrates. Langmuir 25, 6997 (2009).

    Article  CAS  Google Scholar 

  62. N.J. Wittenberg, H. Im, T.W. Johnson, X. Xu, A.E. Warrington, M. Rodriguez, and S.H. Oh: Facile assembly of micro- and nanoarrays for sensing with natural cell membranes. ACS Nano 5, 7555 (2011).

    Article  CAS  Google Scholar 

  63. M.D. Mager, B. Almquist, and N.A. Melosh: Formation and characterization of fluid lipid bilayers on alumina. Langmuir 24, 12734 (2008).

    Article  CAS  Google Scholar 

  64. M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabal, J. Grazul, and D.A. Muller: HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Appl. Phys. Lett. 86, 152904 (2005).

    Article  CAS  Google Scholar 

  65. S.D. Standridge, G.C. Schatz, and J.T. Hupp: Toward plasmonic solar cells: Protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25, 2596 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants to S-H. Oh from the Office of Naval Research (ONR Young Investigator Program), the National Science Foundation (NSF CAREER Award, CBET 1067681, DBI 0964216, and DMR 0941537), the National Institutes of Health (NIH R01 GM092993), and a Defense Advanced Research Projects Agency (DARPA) Young Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, H., Wittenberg, N.J., Lindquist, N.C. et al. Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology. Journal of Materials Research 27, 663–671 (2012). https://doi.org/10.1557/jmr.2011.434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.434

Navigation