Microwave dielectric properties of low loss and highly tunable Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics


This article reports on microstructure and dielectric properties of Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics. Dielectric peaks of the Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics were markedly suppressed, broadened, and shifted to low temperature with increasing content of W. The limit of W incorporating into the barium strontium titanate (BST) lattice was y = 0.02. Two second phases (BaWO4 and Ba2Ti5O12) were formed above the solid solution limit of W in BST. The doping mechanism represents a new approach to develop microwave tunable materials. Dielectric properties of the Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics could be optimized by the content of W. The sample with y = 0.05 had ε′ of 431, quality factor of 365 (at 2.111 GHz), and tunability of 11.5%, which makes a potential candidate for tunable microwave device applications in the wireless communication.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, and K. Wakino: Dielectric materials, devices and circuits. IEEE Trans. Microwave Theory Tech. 50, 706 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, and N. Setter: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    A. Feteira, D.C. Sinclair, I.M. Reaney, Y. Somiya, and M.T. Lanagan: BaTiO3-based ceramics for tunable microwave applications. J. Am. Ceram. Soc. 87(6), 1082 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    P. Irvin, J. Levy, R. Guo, and A. Bhalla: Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composite. Appl. Phys. Lett. 86(4), 042903 (2005).

    Article  Google Scholar 

  5. 5.

    F. Xiang, H. Wang, K.C. Li, Y.H. Chen, M.H. Zhang, Z.Y. Shen, and X. Yao: Dielectric tunability of Ba0.6Sr0.4TiO3/poly(methyl methocrylate) composites in 1-3-type structure. Appl. Phys. Lett. 91(19), 192907 (2007).

    Article  Google Scholar 

  6. 6.

    K. Zhou, S.A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S.P. Alpay: Dielectric response and tunability of a dielectric-paraelectric composite. Appl. Phys. Lett. 93(10), 102908 (2008).

    Article  Google Scholar 

  7. 7.

    J.J. Zhang, J.W. Zhai, M.W. Zhang, P. Qi, X. Yu, and X. Yao: Structure–dielectric properties relationship in Mg–Mn co-doped Ba0.4Sr0.6TiO3/MgAl2O4 tunable microwave composite ceramics. J. Phys. D: Appl. Phys. 42(7), 075414 (2009).

    Article  Google Scholar 

  8. 8.

    U.C. Chung, C. Elissalde, M. Maglione, C. Estournes, M. Pate, and J.P. Ganne: Low-losses, highly tunable Ba0.6Sr0.4TiO3/MgO composite. Appl. Phys. Lett. 92(4), 042902 (2008).

    Article  Google Scholar 

  9. 9.

    W. Chang and L. Sengupta: MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. J. Appl. Phys. 92(7), 3941 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    X.H. Wang, W.Z. Lu, J. Liu, Y.L. Zhou, and D.X. Zhou: Effects of La2O3 additions on properties of Ba0.6Sr0.4TiO3-MgO ceramics for phase shifter applications. J. Eur. Ceram. Soc. 26(10–11), 1981 (2006).

    Article  Google Scholar 

  11. 11.

    M.R. Varma and M.T. Sebastian: Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 27, 2827 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Wu, S.J. Limmer, T.P. Chou, and C. Nguyen: Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J. Mater. Sci. Lett. 21, 947 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    X. Zong, Z. Yang, H. Li, and M. Yuan: Effects of WO3 addition on the structure and electrical properties of Pb3O4 modified PZT-PFW-PMN piezoelectric ceramics. Mater. Res. Bull. 41, 1447 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    I. Coondoo, A.K. Jha, S.K. Aggarwal, and N.C. Soni: Enhancement of dielectric characteristics in donor doped Aurivillius SrBi2Ta2O9 ferroelectric ceramics. J. Eur. Ceram. Soc. 27, 253 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    S. Devi and A.K. Jha: Phase transitions and electrical characteristics of tungsten substituted barium titanate. Phys. B 404, 4290 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    C.S. Liang and J.M. Wu: Electrical properties of W-doped (Ba0.5Sr0.5)TiO3 thin films. J. Cryst. Growth 173, 274 (2005).

    Google Scholar 

  17. 17.

    J.J. Zhang, J.W. Zhai, and X. Yao: Dielectric tunable properties of low-loss Ba0.4Sr0.6Ti1-yMnyO3 ceramics. Scr. Mater. 61, 764 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    K. Yang, Z.F. Gao, and J.J. Bian: Microwave dielectric properties of tungstate ceramics. J. China Ceram. Soc. 34, 251 (2006).

    Google Scholar 

  19. 19.

    B.W. Hakki and P.D. Coleman: A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  20. 20.

    R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  21. 21.

    H.M. Chan, M.P. Harmer, and D.M. Smyth: Compensating defects in highly donor doped BaTiO3. J. Am. Ceram. Soc. 69, 507 (1986).

    CAS  Article  Google Scholar 

  22. 22.

    Y.M. Chiang, D.P. Birnie, and W.D. Kingery: Physical Ceramics (John Wiley and Sons, New York, 1997).

    Google Scholar 

  23. 23.

    P.H. Xiang, X.L. Dong, C.D. Feng, N. Zhong, and J.K. Guo: Sintering behavior, mechanical and electrical properties of lead zirconate titanate/NiO composites from coated powders. Ceram. Int. 30, 765 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Chen, X.L. Dong, R.H. Liang, J.T. Li, and Y.L. Wang: Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics. J. Appl. Phys. 98(6), 064107 (2005).

    Article  Google Scholar 

  25. 25.

    H. Yu and Z.G. Ye: Dielectric properties and relaxor behavior of a new (1−x)BaTiO3xBiAlO3 solid solution. J. Appl. Phys. 103, 034114 (2008).

    Article  Google Scholar 

  26. 26.

    Z.C. Li, H. Zhang, X.D. Zou, and B. Bergman: Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase. Mater. Sci. Eng., B 116, 34 (2005).

    Article  Google Scholar 

  27. 27.

    J.J. Zhang, J.W. Zhai, H.T. Jiang, and X. Yao: Raman and dielectric study of Ba0.4Sr0.6TiO3-MgAl2O4 tunable microwave composite. J. Appl. Phys. 104, 084102 (2008).

    Article  Google Scholar 

  28. 28.

    L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840 (2010).

    CAS  Article  Google Scholar 

Download references


This research was supported by the Ministry of Sciences and Technology of China through 973-project under grant 2009CB623302, the Cultivation Fund of the Key Scientific and Technical Innovation Project.

Author information



Corresponding author

Correspondence to Jiwei Zhai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, M., Zhai, J., Shen, B. et al. Microwave dielectric properties of low loss and highly tunable Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics. Journal of Materials Research 27, 910–914 (2012). https://doi.org/10.1557/jmr.2011.429

Download citation