Skip to main content
Log in

Band engineering of type-II ZnO/ZnSe heterostructures for solar cell applications

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two kinds of type-II heterostructures (HSs) of ZnO (wurtzite)/ZnSe (wurtzite) [ZnO (WZ)/ZnSe (WZ)] and ZnO (wurtzite)/ZnSe (zinc blende) [ZnO (WZ)/ZnSe (ZB)] were designed for photovoltaic applications by first-principle calculations. The calculated effective bandgap of 1.51 eV for the ZnO (WZ)/ZnSe (WZ) HS is more favorable for solar cell applications compared to that of 1.69 eV for the ZnO (WZ)/ZnSe (ZB) HS. Furthermore, the electrons and holes are more effectively separated at the interface of ZnO (WZ)/ZnSe (WZ) HS due to the stronger misfit stress field. Finally, a strained ZB ZnSe layer was introduced to transport the separated holes from WZ ZnSe layer, and an optimal structure of ZnO (WZ)/ZnSe (WZ)/ZnSe (ZB) was proposed to realize a solar cell with near-infrared response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

REFERENCES

  1. K.L. Chopra, P.D. Paulson, and V. Dutta: Thin-film solar cells: An overview. Prog. Photovoltaics Res. Appl. 12, 69 (2004).

    Article  CAS  Google Scholar 

  2. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  3. W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen: Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009 (2004).

    Article  CAS  Google Scholar 

  4. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  Google Scholar 

  5. B.M. Kayes, H.A. Atwater, and N.S. Lewis: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  6. Y. Zhang, L. Wang, and A. Mascarenhas: “Quantum coaxial cables” for solar energy harvesting. Nano Lett. 7, 1264 (2007).

    Article  CAS  Google Scholar 

  7. J. Schrier, D.O. Demchenko, L.W. Wang, and A.P. Alivisatos: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 2377 (2007).

    Article  CAS  Google Scholar 

  8. K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, and A. Mascarenhas: Direct growth of highly mismatched type-II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248 (2008).

    Article  CAS  Google Scholar 

  9. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  10. Z.M. Wu, Y. Zhang, J.J. Zheng, X.G. Lin, X.H. Chen, B.W. Huang, H.Q. Wang, K. Huang, S.P. Li, and J.Y. Kang: An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires. J. Mater. Chem. 21, 6020 (2011).

    Article  CAS  Google Scholar 

  11. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  12. G. Kresse and J. Furthmuller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  13. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  14. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 7953 (1994).

    Article  Google Scholar 

  15. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  16. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  17. X.M. Cheng and C.L. Chien: Magnetic properties of epitaxial Mn-doped ZnO thin films. J. Appl. Phys. 93, 7876 (2003).

    Article  CAS  Google Scholar 

  18. C.G. Van de Walle and R.M. Martin: Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986).

    Article  Google Scholar 

  19. M. Peressi, N. Binggeli, and A. Baldereschi: Band engineering at interfaces: Theory and numerical experiments. J. Phys. D: Appl. Phys. 31, 1273 (1998).

    Article  CAS  Google Scholar 

  20. J.J. Zheng, Z.M. Wu, W.H. Yang, S.P. Li, and J.Y. Kang: Growth and characterization of type-II ZnO/ZnSe core/shell nanowire arrays. J. Mater. Res. 25, 1272 (2010).

    Article  CAS  Google Scholar 

  21. Y. Zhang, K.H. Cai, C. Li, S.Y. Chen, H.K. Lai, and J.Y. Kang: Strain relaxation in ultrathin SGOI substrates fabricated by multistep Ge condensation method. Appl. Surf. Sci. 255, 3701 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by “973” Program (2011CB925600), the National Natural Science Foundations of China (60827004, 61106008, 61106118, and 90921002), the Natural Science Foundations of Fujian Province (2010J01343 and 2011J01362), the fundamental research funds for the central universities (2011121042 and 2011121026), and the Science and Technology Programs of Fujian Province and Xiamen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wu or Junyong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Wu, Z., Lin, X. et al. Band engineering of type-II ZnO/ZnSe heterostructures for solar cell applications. Journal of Materials Research 27, 730–733 (2012). https://doi.org/10.1557/jmr.2011.417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.417

Navigation