Comparison of mechanical behaviors of enamel rod and interrod regions in enamel

Abstract

Interrod regions exist between the enamel rods and are known to have different crystallite orientations and a higher organic content compared to the enamel rods (the intrarod regions). This study aims to characterize the mechanical properties of both regions especially the time-dependent properties by using spherical indentation. Despite the very small amount of proteins, the interrod region shows statistically significantly higher inelastic energy dissipation than the intrarod region with increased deformation times. The total displacement under constant load (creep), viscosity, and stress relaxation behavior of both regions are also reported. Similar to the observation of previous studies, the elastic modulus and hardness in the intrarod region are significantly higher than in the interrod region.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6.
TABLE I.
TABLE II.

References

  1. 1.

    K.E. Healy: Dentin and enamel, in Handbook of Biomaterials Properties, edited by J. Black and G. Hastings (Chapman & Hall, London, 1995), p. 25.

    Google Scholar 

  2. 2.

    P.D. Frazier: Adult human enamel: An electron microscopic study of crystallite size and morphology. J. Ultrastruct. Res. 22, 1 (1968).

    CAS  Article  Google Scholar 

  3. 3.

    G. Daculsi and B. Kerebel: High-resolution electron microscope study of human enamel crystallites: Size, shape, and growth. J. Ultrastruct. Res. 65, 163 (1978).

    CAS  Article  Google Scholar 

  4. 4.

    H. Gray, L.H. Bannister, M.M. Berry, and P.L. Williams: Gray’s Anatomy: The Anatomical Basis of Medicine & Surgery, 38th ed. (Churchill Livingstone, New York, 1995), p. 1710.

    Google Scholar 

  5. 5.

    A. Nanci: Ten Cate’s Oral Histology: Development, Structure, and Function (Mosby, St Louis, 2003).

    Google Scholar 

  6. 6.

    D. Bajaj and D.D. Arola: On the R-curve behavior of human tooth enamel. Biomaterials 30, 4037 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    M.J. Glimcher, E.J. Daniel, D.F. Travis, and S. Kamhi: Electron optical and x-ray diffraction studies of the organization of the inorganic crystals in embryonic bovine enamel. J. Ultrastruct. Res. 50, 1 (1965).

    Article  Google Scholar 

  8. 8.

    M.C. Maas and E.R. Dumont: Built to last: The structure, function and evolution of primate dental enamel. Evol. Anthropol. 8, 133 (1999).

    Article  Google Scholar 

  9. 9.

    C.R. Carlisle, C. Coulais, and M. Guthold: The mechanical stress-strain properties of single electrospun collagen type I nanofibers. Acta Biomater. 6, 2997 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    S. Habelitz, S.J. Marshall, G.W. Marshall Jr., and M. Balooch: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    J. Ge, F.Z. Cui, X.M. Wang, and H.L. Feng: Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26, 3333 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    M. Oyen and R.F. Cook: A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2(4), 396 (2009).

    Article  Google Scholar 

  13. 13.

    J. Mencik, L.H. He, and M.V. Swain: Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation. J. Mech. Behav. Biomed. Mater. 2, 318 (2009).

    Article  Google Scholar 

  14. 14.

    M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20(8), 2094 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    M.L. Oyen and R.F. Cook: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(1), 139 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    S.E. Olesiak, M.L. Oyen, and V.L. Ferguson: Viscous-elastic-plastic behavior of bone using Berkovich nanoindentation. Mech. Time-Depend. Mater. 14, 111 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    H.R. Hertz: Miscellaneous Papers (Macmillan, London, 1896).

    Google Scholar 

  18. 18.

    J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    L.H. He and M.V. Swain: Energy absorption characterization of human enamel using nanoindentation. J. Biomat. Mater. Res. 81, 484 (2007).

    Article  Google Scholar 

  21. 21.

    E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  22. 22.

    K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  23. 23.

    M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    M. Sakai and S. Shimizu: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    L.H. He and M.V. Swain: Nanoindentation creep behavior of human enamel. J. Mech. Behav. Biomed. Mater. 91, 352 (2009).

    Google Scholar 

  26. 26.

    G. Williams and D.C. Watts: Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970).

    CAS  Article  Google Scholar 

  27. 27.

    K.L. Dorrington: The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol. 34, 289 (1980).

    CAS  Google Scholar 

  28. 28.

    S.F. Ang, E.L. Bortel, M.V. Swain, A. Klocke, and G.A. Schneider: Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales. Biomaterials 31, 1955 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    S. Habelitz, G.W. Marshall, M. Balooch, and S.J. Marshall: Nanoindentation and storage of teeth. J. Biomech. 35(7), 995 (2002).

    Article  Google Scholar 

  30. 30.

    B. Viswanath, R. Raghavan, U. Ramamurty, and N. Ravishankar: Mechanical properties and anisotropy in hydroxyapatite single crystals. Scr. Mater. 57, 361 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    L. Dougan, A.S. Koti, G. Genchev, H. Lu, and J.M. Fernandez: A single-molecule perspective on the role of solvent hydrogen bonds in protein folding and chemical reactions. ChemPhysChem. 9, 2836 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    J. Zhang, M.M. Michalenko, E. Kuhl, and T.C. Ovaert: Characterization of indentation response and stiffness reduction of bone using a continuum damage model. J. Mech. Behav. Biomed. Mater. 3, 189 (2010).

    Article  Google Scholar 

  33. 33.

    L.H. He and M.V. Swain: Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28, 4512 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    G.A. Schneider, L.H. He, and M.V. Swain: Viscous flow model of creep in enamel. J. Appl. Phys. 103, 014701 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to German Research Foundation for financial support. We also appreciate teeth samples collection from Dr. Carmen Gottstein and Mr. Peter Stutz from University of Hamburg.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerold A. Schneider.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ang, S.F., Saadatmand, M., Swain, M.V. et al. Comparison of mechanical behaviors of enamel rod and interrod regions in enamel. Journal of Materials Research 27, 448–456 (2012). https://doi.org/10.1557/jmr.2011.409

Download citation