Electrochemical performance of TiO2/carbon nanotubes nanocomposite prepared by an in situ route for Li-ion batteries


A TiO2/carbon nanotubes (TiO2/CNTs) composite was synthesized by chemical vapor deposition method with in situ growth of CNTs using hydrothermally treated TiO2 as the starting material. The nanocomposite was characterized by powder x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrum, and nitrogen adsorption/desorption isotherms and was investigated as an anode material for lithium-ion batteries. The underlying mechanism for the improvement was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. The in situ synthesized composite showed better electrochemical performance than the pristine TiO2. The in situ formed CNTs not only supply an efficient conductive network but also keep the structural stability of the TiO2 particles, leading to improved electrochemical performance.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    M. Wagemaker, A.P.M. Kentgens, and F.M. Mulder: Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    A.R. Armstrong, G. Armstrong, J. Canales, and P.G. Bruce: TiO2-B nanowires. Angew. Chem. Int. Ed. 43, 2286 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    H. Zhang, G.R. Li, L.P. An, T.Y. Yan, X.P. Gao, and H.Y. Zhu: Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J. Phys. Chem. C 111, 6143 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P.G. Bruce: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    H. Liu, L.J. Fu, H.P. Zhang, J. Gao, C. Li, Y.P. Wu, and H.Q. Wu: Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries. Electrochem. Solid-State Lett. 9, A529 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    T. Sainsbury and D. Fitzmaurice: Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes. Chem. Mater. 16, 3780 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    A. Gomathi, S.R.C. Vivekchand, A. Govindaraj, and C.N.R. Rao: Chemically bonded ceramic-oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 17, 2757 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    S. Yoon, B.H. Ka, C. Lee, M. Park, and S.M. Oh: Electrochem: Preparation of nanotube TiO2-carbon composite and its anode performance in lithium-ion batteries. Solid-State Lett. 12, A28 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, and D.L. Huber: Synthesis and Characterization of Titania-Graphene Nanocomposites. J. Phys. Chem. C 113, 19812 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    D. Fang, K.L. Huang, S.Q. Liu, and Z.J. Li: Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material. J. Alloy. Comp. 464, 15 (2008).

    Article  Google Scholar 

  12. 12.

    S.W. Kim, T.H. Han, J. Kim, H. Gwon, H.S. Moon, S.W. Kang, S.O. Kim, and K. Kang: Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3, 1085 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    R. Yoshida, Y. Suzuki, and S. Yoshikawa: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    L. Kavan, R. Bacsa, M. Tunckol, P. Serp, S.M. Zakeeruddin, F.L. Formal, M. Zukalova, and M. Graetzel: Multi-walled carbon nanotubes functionalized by carboxylic groups: Activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical storage. J. Power Sources 195, 5360 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    D. Eder and A.H. Windle: Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv. Mater. 20, 1787 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    F.F. Cao, Y.G. Guo, S.F. Zheng, X.L. Wu, L.Y. Jiang, R.R. Bi, L.J. Wan, and J. Maier: Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to lithium storage problem. Chem. Mater. 22, 1908 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, and P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, and P.M. Ajayan: Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J. Phys. Chem. C 114, 658 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Y.J. Chen, C.L. Zhu, and T.H. Wang: The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 17, 3012 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    P. Lin, Q.J. She, B.L. Hong, X.J. Liu, Y.N. Shi, Z. Shi, M.S. Zheng, and Q.F. Dong: The nickel oxide/CNT composites with high capacitance for supercapacitor. J. Electrochem. Soc. 7, A818 (2010).

    Article  Google Scholar 

  21. 21.

    Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, and Y. Lu: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    M. Jayalakshmi, M.M. Rao, N. Venugopal, and K.B. Kim: Hydrothermal synthesis of SnO2-V2O5 mixed oxide and electrochemical screening of carbon nano-tubes(CNT), V2O5, V2O5-CNT, and SnO2-V2O5-CNT electrodes for supercapacitor applications. J. Power Sources 166, 578 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    H. Huang, W.K. Zhang, X.P. Gan, C. Wang, and L. Zhang: Electrochemical investigation of TiO2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries. Mater. Lett. 61, 296 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Shen, S.K. You, S.G. Park, H. Jiang, D.D. Guo, B.A. Chen, and X.M. Wang: Electrochemical biosensing for cancer cells based on TiO2/CNT nanocomposites modified electrodes. Electroanalysis 20, 2526 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    D.V. Bavykin, V.N. Parmon, A.A. Lapkin, and F.C. Walsh: The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    C.C. Tsai and H.S. Teng: Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 18, 367 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    R. Yoshida, Y. Suzuki, and S. Yoshikawa: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal post-heat treatments. J. Solid State Chem. 178, 2179 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    J.H. Zhang, J. Du, Y.T. Qian, and S.L. Xiong: Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene. Mater. Res. Bull. 45, 15 (2010).

    Article  Google Scholar 

  30. 30.

    F.J. Carrion, C. Espejo, J. Sanes, and M.D. Bermudez: Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics. Compos. Sci. Technol. 70, 2160 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Y.C. Qiu, K.Y. Yan, S.H. Yang, L.M. Jin, H. Deng, and W.S. Li: Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4, 6515 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    X. Li, M.Z. Qu, Y.J. Huai, and Z.L. Yu: Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim. Acta 55, 2978 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    T. Piao, S.M. Park, C.H. Doh, and S.I. Moon: Intercalation of lithium ion into graphite electrodes studied by AC impedance measurements. J. Electrochem. Soc. 146, 2794 (1999).

    CAS  Article  Google Scholar 

Download references


This work was supported by Zijin Program of Zhejiang University, China, the Fundamental Research Funds for the Central Universities (No. 2010QNA4003), the PhD Programs Foundation of Ministry of Education of China (No. 20100101120024), the Foundation of Education Office of Zhejiang Province (No. Y201016484), the Qianjiang Talents Project of Science Technology Department of Zhejiang Province (2011R10021), and the National Natural Science Foundation of China (No. 51101139).

Author information



Corresponding author

Correspondence to Xin-Bing Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, YX., Xie, J., Cao, GS. et al. Electrochemical performance of TiO2/carbon nanotubes nanocomposite prepared by an in situ route for Li-ion batteries. Journal of Materials Research 27, 417–423 (2012). https://doi.org/10.1557/jmr.2011.406

Download citation