Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles

Abstract

A facile ethylene glycol–based solvothermal method was developed for the synthesis of lanthanide orthovanadate LnVO4 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu) nanoparticles with relatively uniform size and morphologies. The LnVO4 nanoparticles ranged from 100 to 500 nm and changed from spheres to ellipses and platelet–shaped particles depending on the ionic size. Radius of the Ln ions affected crystal structure. The particles with larger ions form monoclinic-type structure for LaVO4 and with smaller ions form zircon-type structure for LnVO4 (Ln = Pr-Yb). A nucleation and aggregates formation mechanism of LnVO4 nanomaterials was proposed to illustrate the crystal growth. The morphologies of LnVO4 nanoparticles could be turned by pH value and molar ratio of reactants. Spherical LaVO4 and PrVO4 nanoparticles were obtained at pH 6, whereas elliptical nanoparticles were obtained at pH 3. Eu3+-, Dy3+-, and Sm3+-doped zircon-type YVO4 nanoparticles exhibit strong luminescence typical of doped ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Z.M. Fang, Q. Hong, Z.H. Zhou, S.J. Dai, W.Z. Weng, and H.L. Wan: Oxidative dehydrogenation of propane over a series of low‐temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett. 61, 39 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    M.V. Martínez-Huerta, J.M. Coronado, M. Fernández-Garcia, A. Iglesias-Juez, G. Deo, J.L.G. Fierro, and M.A. Banares: Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J. Catal. 225, 240 (2004).

    Article  Google Scholar 

  3. 3.

    Y. Terada, K. Shimamura, V.V. Kochurikhin, L.V. Barashov, M.A. Ivanov, and T. Fukuda: Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth 167, 369 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    R.A. Fields, M. Birnbaum, and C.L. Fincher: Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl. Phys. Lett. 51, 1885 (1987).

    CAS  Article  Google Scholar 

  5. 5.

    A. Huignard, T. Gacoin, and J.P. Boilot: Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 12, 1090 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    W.L. Fan, X.Y. Song, Y.X. Bu, S.X. Sun, and X. Zhao: Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 110, 23247 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    C.C. Yu, M. Yu, C.X. Li, C.M. Zhang, P.P. Yang, and J. Lin: Spindle-like lanthanide orthovanadate nanoparticles: Facile synthesis by ultrasonic irradiation, characterization, and luminescent properties. Cryst. Growth Des. 9, 783 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    C.J. Jia, L.D. Sun, L.P. You, X.C. Jiang, F. Luo, Y.C. Pang, and C.H. Yan: Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 109, 3284 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    S. Mahapatra and A. Ramanan: Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho). J. Alloy. Comp. 395, 149 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    W.L. Fan, Y.X. Bu, X.Y. Song, S.X. Sun, and X. Zhao: Selective synthesis and luminescent properties of monazite- and zircon-yype LaVO4:Ln (Ln = Eu, Sm, and Dy) nanocrystals. Cryst. Growth Des. 7, 2361 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    S. Mahapatra, S.K. Nayak, G. Madras, and T.N.G. Row: Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates. Ind. Eng. Chem. Res. 47, 6509 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    L.W. Qian, J. Zhu, Z. Chen, Y.C. Gui, Q. Gong, Y.P. Yuan, J.T. Zai, and X.F. Qian: Self-assembled heavy lanthanide orthovanadate architecture with controlled dimensionality and morphology. Chemistry 15, 1233 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    J.F. Liu and Y.D. Li: General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 17, 1797 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    H. Deng, S.H. Yang, S. Xiao, H.M. Gong, and Q.Q. Wang: Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. J. Am. Chem. Soc. 130, 2032 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    J.F. Liu and Y.D. Li: Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Adv. Mater. 19, 1118 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    J.P. Ge, Y.X. Hu, M. Biasini, W.P. Beyermann, and Y.D. Yin: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, and Y.D. Li: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 44, 2782 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    J.P. Ge, Y.X. Hu, M. Biasini, C.L. Dong, J.H. Guo, W.P. Beyermann, and Y.D. Yin: One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chemistry 13, 7153 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Y.G. Sun and Y.N. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    S.H. Irn, Y.T. Lee, B. Wiley, and Y.N. Xia: Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44, 2154 (2005).

    Article  Google Scholar 

  21. 21.

    X. Liang, X. Wang, Y. Zhuang, B. Xu, S.M. Kuang, and Y.D. Li: Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. J. Am. Chem. Soc. 130, 2736 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    X. Liang, B. Xu, S.M. Kuang, and X. Wang: Multi-functionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater. 20, 3739 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    S. Libert, V. Gorshkov, D. Goia, E. Matijevi, and V. Privman: Model of controlled synthesis of uniform colloid particles: Cadmium sulphide. Langmuir 19, 10679 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    V. Privman, D.V. Goia, J. Park, and E. Matijevié: Mechanism of formation of monodispersed colloids by aggregation of nanosize Precursors. J. Colloid Interface Sci. 213, 36 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    G.F. Wang, W.P. Qin, D.S. Zhang, L.L. Wang, G.D. Wei, P.F. Zhu, and R. Kim: Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing. J. Phys. Chem. C 112, 17042 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    F. Wang, X.J. Xue, and X.G. Liu: Multicolor tuning of (Ln, P)-Doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (90606006), the Foundation for the Author of National Excellent Doctoral Dissertation of China, and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2006CBON0300).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yadong Li.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to Supplemental files can be viewed online by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liang, X., Kuang, S. & Li, Y. Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles. Journal of Materials Research 26, 1168–1173 (2011). https://doi.org/10.1557/jmr.2011.36

Download citation