On-chip tensile testing of nanoscale silicon free-standing beams


Nanomechanical testing of silicon is primarily motivated toward characterizing scale effects on the mechanical behavior. “Defect-free” nanoscale silicon additionally offers a road to large deformation permitting the investigation of transport characteristics and surface instabilities of a significantly perturbed atomic arrangement. The need for developing simple and generic characterization tools to deform free-standing silicon beams down to the nanometer scale, sufficiently equipped to investigate both the mechanical properties and the carrier transport under large strains, has been met in this research through the design of a versatile lab-on-chip. The original on-chip characterization technique has been applied to monocrystalline Si beams produced from Silicon-on-Insulator wafers. The Young’s modulus was observed to decrease from 160 GPa down to 108 GPa when varying the thickness from 200 down to 50 nm. The fracture strain increases when decreasing the volume of the test specimen to reach 5% in the smallest samples. Additionally, atomic force microscope-based characterizations reveal that the surface roughness decreases by a factor of 5 when deforming by 2% the Si specimen. Proof of concept transport measurements were also performed under deformation up till 3.5% on 40-nm-thick lightly p-doped silicon beams.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    K. Kang and W. Cai: Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations Int. J. Plast. 26, 1387 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    A. Heidelberg, L.T. Ngo, B. Wu, M.A. Philips, S. Sharma, T.I. Kamins, J.E. Sader, and J.J. Boland: A generalized description of the elastic properties of nanowires Nano Lett. 6 (6), 1101 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Zhu, N. Moldovan, and H.D. Espinosa: A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures Appl. Phys. Lett. 86, 013506 (2005).

    Article  CAS  Google Scholar 

  4. 4.

    X. Han, K. Zheng, Y. Zhang, X. Zhang, Z. Zhang, and Z. Wang: Low-temperature in-situ large-strain plasticity of silicon nanowires Adv. Mater. 19, 2112 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    K. Nakamura, T. Toriyama, and S. Sugiyama: First-principles simulation on piezoresistive properties in doped silicon nanosheets IEEJ Trans. Electr. Electron. Eng. 5 (2), 157 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    R. He and P. Yang: Giant piezoresistance effect in silicon nanowires Nat. Nanotechnol. 1, 42 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastegar, and B.L. Pruitt: Review: Semiconductor piezoresistance for microsystems Proc IEEE Inst. Electr. Electron. Eng. 97 (3) 513 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    D.V. Singh, K.A. Jenkins, J. Sleight, Z. Ren, M. Ieong, and W. Haensch: Strained ultrahigh performance fully depleted nMOSFETs with ft of 330 GHz and sub-30-nm gate lengths IEEE Electron Device Lett. 27 (3), 191 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    K.-M. Tan, T.Y. Liow, R.T.P. Lee, K.M. Hoe, C.-H. Tung, N. Balasubramanian, G.S. Samudra, and Y.-C. Yeo: Strained p-channel FinFETs with extended π-shaped silicon-germanium source and drain stressors IEEE Electron Device Lett. 28 (10), 905 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    L.B. Freund and S. Suresh: Thin Film Materials, 1st ed. (Cambridge University Press, Cambridge2003).

    Google Scholar 

  11. 11.

    A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, and E. Bertagnolli: Anomalous piezoresistance effect in ultra-strained silicon nano-wires Nano Lett. 10 (8), 3204 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    S. Hoffmann, I. Utke, B. Moser, J. Michler, S.H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gosele, and C. Ballif: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires Nano Lett. 6 (4), 622 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    San A. Paulo, J. Bokor, R.T. Howe, R. He, P. Yang, D. Gao, C. Carraro, and R. Maboudian: Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method Appl. Phys. Lett. 87, 053111 (2005).

    Article  CAS  Google Scholar 

  14. 14.

    B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowire Nat. Mater. 4, 525 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Haque and M.T.A. Saif: Microscale materials testing using MEMS actuators J. Microelectromech. Syst. 10 (1), 146 (2001).

    Article  Google Scholar 

  16. 16.

    H.D. Espinosa, Y. Zhu, and N. Moldovan: Design and operation of a MEMS based material testing system for nanomechanical characterization J. Microelectromech. Syst. 16 (5), 1219 (2007).

    Article  Google Scholar 

  17. 17.

    T. Tsuchiya, M. Hirata, N. Chiba, R. Udo, Y. Yoshitomi, T. Ando, K. Sato, K. Takashima, Y. Higo, Y. Saotome, H. Ogawa, K. Ozaki: Cross comparison of thin-film tensile-testing methods examined using single-crystal silicon, polysilicon, nickel, and titanium films IEEE J Microelectromech. Syst. 14 (5), 666 (2005).

    Article  CAS  Google Scholar 

  18. 18.

    S. Gravier, M. Coulombier, A. Safi, N. André, A. Boé, J.-P. Raskin, and T. Pardoen: New on-chip nanomechanical testing laboratory—Applications to aluminum and polysilicon thin films J. Microelectromech. Syst. 18 (3), 555 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    V. Passi, U. Bhaskar, T. Pardoen, U. Södervall, B. Nilsson, G. Petersson, M. Hagberg, JP. Raskin: Fast and reliable fracture strain extraction technique applied to Silicon at nanometer scale Rev. Sci. Instrum. (2011, accepted).

    Google Scholar 

  20. 20.

    E.-C. Escobedoousin, J.-P. Raskin, U. Bhaskar, T. Pardoen, and S. Olsen: Characterising the effect of uniaxial strain on the surface roughness of Si nanowire MEMS-based microstructures, in Proceedings of the 2010 Materials Research Society Fall Meeting—MRS Fall’10, Boston, Massachusetts, November 29-December 3, 2010, oral presentation, paper # S3.4.

    Google Scholar 

  21. 21.

    H. Idrissi, B. Wang, M.S. Colla, J.P. Raskin, D. Schryvers, and T. Pardoen: Ultrahigh strain hardening in thin palladium films with nanoscale twins Adv. Mater. 23, 2119 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    D. Fabregue, N. André, M. Coulombier, J.-P. Raskin, and T. Pardoen. Multipurpose nanomechanical testing machines revealing the size-dependent strength and high ductility of pure aluminium submicron films Micro Nano Lett. 2 (1), 13 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    E.A. Irene: Residual stress in silicon nitride films J. Electron. Mater. 5 (3), 287 (1976).

    CAS  Article  Google Scholar 

  24. 24.

    L. Brillson: Surfaces and Interfaces of Electronic Material (Wiley VCH, Berlin, 2010).

    Google Scholar 

  25. 25.

    J.S. Milne, A.C. Rowe, S. Arscott, C.H. Renner: Giant piezoresistance effects in silicon nano wires and microwires Phys Rev Lett. 26, 10522, (2010).

    Google Scholar 

  26. 26.

    C. Euaruksakul, F. Chen, B. Tanto, C.S. Ritz, D.M. Paskiewicz, F.J. Himpsel, D.E. Savage, Z. Liu, Y. Uao, F. Liu, and M.G. Lagally: Relationships between strain and band structure in Si(001) an Si (110) nanomembranes Phys. Rev. B 80, 115323 (2009).

    Article  CAS  Google Scholar 

  27. 27.

    Y. Yang, X. Xia, X. Gan, P. Xu, H. Yu, and X. Li: Nano-thick resonant cantilevers with a novel specific reaction-induced frequency-increase effect for ultra-sensitive chemical detection J. Micromech. Microeng. 20, 055022 (2010).

    Article  CAS  Google Scholar 

  28. 28.

    U. Bhaskar, S. Houri, V. Passi, T. Pardoen, and J.-P. Raskin: Nano-mechanical testing of free-standing mono-crystalline silicon beams, in Proceedings of the 219th Electrochemical Society Meeting—ECS 2011, Montreal, QC, Canada, May 1-6, 2011, paper # 1446.

    Google Scholar 

  29. 29.

    G.J. Kynch: The fundamental modes of vibration of uniform beams from medium wavelengths Br. J. Appl. Phys. 8, 64 (1957).

    Article  Google Scholar 

  30. 30.

    L.G. Zhou and H. Huang: Are surfaces elastically stiffer or softer? Appl. Phys. Lett. 84, 11 (2004).

    Google Scholar 

  31. 31.

    H. Sadeghian, H. Goosen, A. Bossche, B. Thijsse, and van F. Keulen: On the size-dependent elasticity of silicon nanocantilevers: Impact of defects J. Phys. D: Appl. Phys. 44, 072001 (2011).

    Article  CAS  Google Scholar 

  32. 32.

    H. Sadeghian, J.F.L. Goosen, A. Bossche, B.J. Thijsse, and van F. Keulen: Surface reconstruction and elastic behavior of silicon nanobeams: The impact of applied deformation Thin Solid Films 518, 3273 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    H. Sadeghian, C.K. Yang, J.F.L. Goosen, van der E. Drift, A. Bossche, P.J. French, and Van F. Keulen: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability Appl. Phys. Lett. 94, 221903 (2009).

    Article  CAS  Google Scholar 

  34. 34.

    S. Johansson, J-Å. Schweitz, L. Tenerz, and J. Tirén: Fracture testing of silicon microelements in situ in a scanning electron microscope J. Appl. Phys. 63, 4799 (1988).

    CAS  Article  Google Scholar 

  35. 35.

    C.J. Wilson and P.A. Beck: Fracture testing of bulk silicon micro cantilever beams subjected to a side load IEEE J Microelectromech. Syst. 5 (3), 142 (1996).

    Article  Google Scholar 

  36. 36.

    Wonmo Kang J.H. Han, M.T.A. Saif: A novel method for in situ uniaxial tests at the micro/nanoscale—Part II. Experiment J. Microelectromech. Syst. 19 (6), 1322 (2010).

    Article  CAS  Google Scholar 

  37. 37.

    R.F. Cook: Strength and sharp contact fracture of silicon J. Mater. Sci. 41, 841 (2006).

    CAS  Article  Google Scholar 

  38. 38.

    B.L. Boyce, J.M. Grazier, T.E. Buchheit, and M.J. Shaw: Strength distribuitions in polycrystalline silicon MEMS IEEE J Microelectromech Syst. 16 (2), 179 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    T. Alan, M.A. Hines, and A.T. Zehnder: Effect of surface morphology on the fracture strength of silicon nanobeams Appl. Phys. Lett. 89, 091901 (2006).

    Article  CAS  Google Scholar 

  40. 40.

    T. Yi, L. Li, and C.-J. Kim: Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength Sens. Actuators 83, 172 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    M.V. Fischetti, F. Gámiz, and W. Hansch: On the enhanced electron mobility in strained-silicon inversion layers J. Appl. Phys. 92 (12), 7320 (2002).

    CAS  Article  Google Scholar 

  42. 42.

    G. Hadjisavvas, L. Tsetseris, and S.T. Pantelides: The origin of electron mobility enhancement in strained MOSFETS IEEE Electron Device Lett. 28, 1018 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    M.H. Evans, X.G. Zhang, J.D. Joannoôulos, S.T. Pantelides: First principles mobility calculations and interface roughness in nanoscale structures Phys Rev Lett. 95, 106802 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    F. Chen, E. Ramayya, C. Euaruksakul, F. Himpsel, G. Celler, B. Ding, I. Knezevic, and M. Lagally: Quantum confinement, surface roughness and the conduction band structure of ultrathin silicon membranes ACS Nano 4 (4), 2466 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    A.S. Scott, W. Peng, A.M. Kiefer, H. Jiang, I. Knezevic, D.E. Savage, M.A. Eriksson, and M.G. Lagally: Influence of surface chemical modification on charge transport on ultrathin silicon membranes ACS Nano 3 (7), 1683 (2009).

    CAS  Article  Google Scholar 

Download references


The authors express gratitude for access to MC2, Nano-fabrication Laboratory, Chalmers University of Technology, Department of Microtechnology and Nanoscience, Sweden, and Prof. Ulf Södervall for the fruitful discussions. The authors would especially like to thank the European Network of Excellence (FP7) NANOSIL and MINATIS consortia for funding this research.

Author information



Corresponding author

Correspondence to Umesh Bhaskar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhaskar, U., Passi, V., Houri, S. et al. On-chip tensile testing of nanoscale silicon free-standing beams. Journal of Materials Research 27, 571–579 (2012). https://doi.org/10.1557/jmr.2011.340

Download citation