Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation

Abstract

Instrumented nanoindentation technique is a powerful approach for accurately measuring mechanical properties of materials in micron or even nanoscale. In this article, the effect of tin (Sn) content upon mechanical properties of the α-phase in Cu–Sn alloys was studied by using an instrumented nanoindentation. The experimental results revealed that: (i) the hardness of the α-phase exhibited a linear relationship with Sn content (C) increasing, i.e., H = 0.0757C + 0.8916, when it was less than the maximum solid solubility (15.8 wt.%), which is in good agreement with the Friedel–Mott–Suzuki theory; (ii) the variation of Young’s modulus in a narrow range of 120–130 GPa is attributed to orientation variation of the α-phase in casting Cu–Sn dendrites.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.

References

  1. 1.

    R. Gordon and R. Knopf: Metallurgy of bronze used in tools from Machu Picchu, Peru. Archaeometry 48, 57 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    J.S. Park, C.W. Park, and K.J. Lee: Implication of peritectic composition in historical high-tin bronze metallurgy. Mater. Charact. 60, 1268 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    R.D. Joseph: Copper and Copper Alloys. (ASM International. Handbook Committee, 2001), pp. 44–46.

    Google Scholar 

  4. 4.

    R. Selver and R. Varol: Some thermal and physical characteristics of sintered tin bronze bearings. Metall. 57, 28 (2002).

    Google Scholar 

  5. 5.

    B.S. Ünlüa and E. Atik: Evaluation of effect of alloy elements in copper based CuSn10 and CuZn30 bearings on tribological and mechanical properties. J. Alloy. Comp. 489, 262 (2010).

    Article  Google Scholar 

  6. 6.

    T.K. He: Synthetic study on the alloying technique for bronze in the pre-QIN period. Studies in the History of Natural Sciences 16, 273 (1997) (Article in Chinese, Abstract in English).

    Google Scholar 

  7. 7.

    D.A. Scott: Metallography and Microstructure of Ancient and Historic Metals. (The Getty Conservation Institute J. Paul Getty Museum, Malibu CA, 1991), p. 121.

    Google Scholar 

  8. 8.

    J. Audy and K. Audy: Analysis of bell materials: Tin bronzes. China Foundry 5, 199 (2008).

    CAS  Google Scholar 

  9. 9.

    J.B. Pethicai, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).

    Article  Google Scholar 

  10. 10.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    X.D. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    F. Riede and J.M. Wheeler: Testing the “Laacher See hypothesis”: Tephra as dental abrasive. J. Archaeol. Sci. 36, 2384 (2009).

    Article  Google Scholar 

  14. 14.

    L.A. Darnell, M.F. Teaford, K.J.T. Livi, and T.P. Weihs: Variations in the mechanical properties of Alouatta palliata molar enamel. Am. J. Phys. Anthropol. 141, 7 (2010).

    Google Scholar 

  15. 15.

    G.D. Sanson, S.A. Kerr, and K.A. Gross: Do silica phytoliths really wear mammalian teeth? J. Archaeol. Sci. 34, 526 (2007).

    Article  Google Scholar 

  16. 16.

    H. Lerner, X.D. Du, A. Costopoulos, and M. Ostoja-Starzewski: Lithic raw material physical properties and use-wear accrual. J. Archaeol. Sci. 34, 711 (2007).

    Article  Google Scholar 

  17. 17.

    R. Fleischer and W. Hibbard: The Relation Between Structure and Mechanical Properties of Metals, Vol. 1. (H.M.S.O., London, 1963), p. 262.

    Google Scholar 

  18. 18.

    N. Mott and F. Nabarro: Report on the Strength of Solids. (Physical Society, London, 1948), pp. 1–19.

    Google Scholar 

  19. 19.

    N. Mott: Imperfections in Nearly Perfect Crystals. (John Wiley, New York, 1952), p. 173.

    Google Scholar 

  20. 20.

    F. Nabarro: Dislocations and Properties of Real Materials. (The Institute of Metals, London, 1985), p. 152.

    Google Scholar 

  21. 21.

    J. Friedel: Dislocations. (Addison-Wesley, New York, 1964), p. 224.

    Google Scholar 

  22. 22.

    T. Suzuki, S. Takeuchi, and H. Yoshinaga: Dislocation Dynamics and Plasticity. (Springer-Verlag, Berlin Heidelberg, 1991), p. 32.

    Google Scholar 

  23. 23.

    E. Schmidt and W. Boas: Plasticity of Crystals, English Translation. (Hughes and Co., London, 1950), p.191.

    Google Scholar 

  24. 24.

    S.N. Dub, Y.Y. Lim, and M.M. Chaudhri: Nanohardness of high purity Cu (111) single crystals: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107, 043510 (2010).

    Article  Google Scholar 

  25. 25.

    ISO 1577-1: “Metallic materials-Instrumented indentation test for hardness and materials parameter-Test method.” (ISO Central Secretariat, Geneva, Switzerland, 2002).

    Google Scholar 

  26. 26.

    J. Chen and Y.S. Lai: Towards elastic anisotropy and strain-induced void formation in Cu-Sn crystalline phases. Microelectron. Reliab. 49, 264 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    R. An, C.Q. Wang, Y.H. Tian, and H. Wu: Determination of the elastic properties of Cu3Sn through first-principles calculations. J. Electron. Mater. 37(4), 477 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Z.D. Guo, X.F. Wang, X.P. Yang, D.M. Jiang, X.M. Ma, and H.W. Song: Relationships between young’s modulus, hardness and orientation of grain in polycrystalline copper. Acta Metall. Sin. 44, 901 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Culture of Wuhan, China, and the Higher education of scientific research project Foundation of China (No. 20070486016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunxu Pan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., He, K., Liao, C. et al. Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation. Journal of Materials Research 27, 192–196 (2012). https://doi.org/10.1557/jmr.2011.299

Download citation